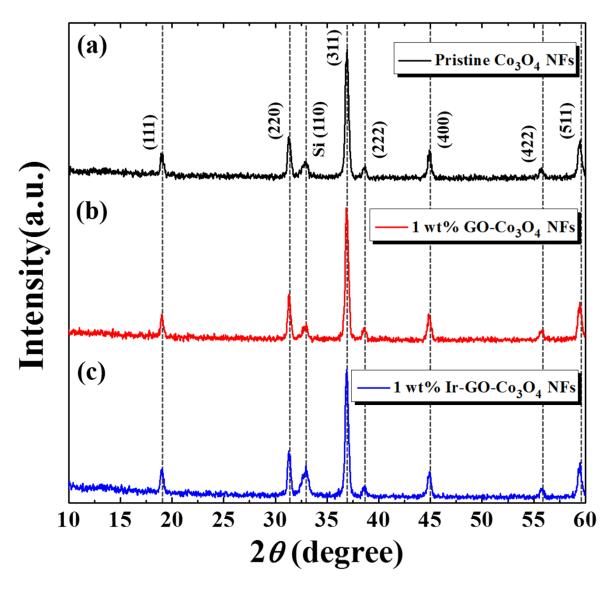
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2014

## **Supporting Information**

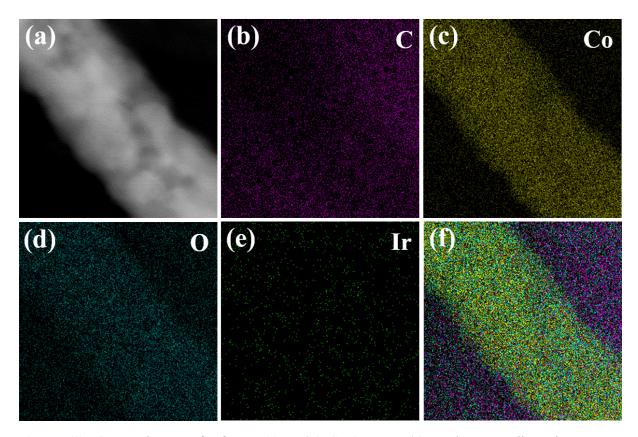
## Bi-functional Co-sensitization of Graphene Oxide Sheets and Ir Nanoparticles on P-type Co<sub>3</sub>O<sub>4</sub> Nanofibers for Selective Acetone Detection

Seon-Jin Choi, a Won-Hee Ryu, b Sang-Joon Kim, Hee-Jin Choa and Il-Doo Kim\*, a

<sup>a</sup>Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea

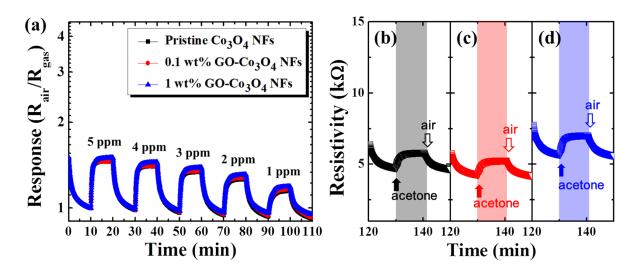

<sup>b</sup>Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States

\* Corresponding author. Tel.: +82-42-350-3329; fax: +82-42-350-3310.

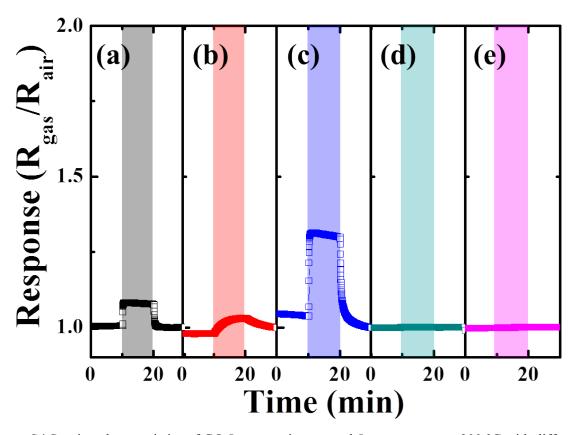

E-mail addresses: idkim@kaist.ac.kr (I.D. Kim).

#### **Supporting experimental section**

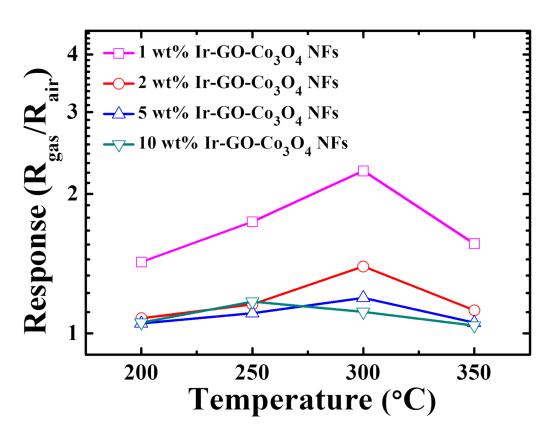
**Synthesis of Ir nanoparticles (NPs)** 0.5 g of H<sub>2</sub>IrCl<sub>6</sub> was dissolved in 75 mL EG under magnetic stirring at room temperature. Then, the H<sub>2</sub>IrCl<sub>6</sub> solution was heated to 100 °C for 1 h at a rate of 1 °C min<sup>-1</sup>. The color of the solution changed gradually from dark to light brown. The synthesized solution was centrifuged at 3000 rpm for 10 min and washed with DI water multiple times to obtain colloidal Ir NPs. Ir nanoparticles were dispersed in ethanol, and these were directly used as the Ir catalyst for the functionalization of Co<sub>3</sub>O<sub>4</sub> NFs. The synthesized Ir NPs exhibited an average diameter of 6 nm.




**Figure S1.** X-ray diffraction (XRD) analysis with the  $2\theta$  angle in the range of  $10\text{--}60^\circ$ : (a) pristine  $\text{Co}_3\text{O}_4$  NFs, (b) 1 wt% GO-Co<sub>3</sub>O<sub>4</sub> NFs and (c) 1 wt% Ir-GO-Co<sub>3</sub>O<sub>4</sub> NFs




**Figure S2**. STEM image of of 1 wt% Ir-GO-Co<sub>3</sub>O<sub>4</sub> NFs (a); and energy-dispersive X-ray spectroscopy (EDX) elemental mapping of: (b) carbon, (c) cobalt, (d) oxygen, (e) iridium, and (f) all components.


STEM image showed a 1wt% Ir-GO-Co<sub>3</sub>O<sub>4</sub> NF which showed partially porous structure (Figure S1a). It was evidently confirmed that each component of carbon (C) (Figure S1b), cobalt (Co) (Figure S1c), oxygen (O) (Figure S1d) and iridium (Ir) (Figure S1e) as well as overlapped mapping of all components (Figure S1f) were identified.



**Figure S3** Response characteristics of pristine  $Co_3O_4$  NFs, 0.1 wt%  $GO-Co_3O_4$  NFs and 1 wt%  $GO-Co_3O_4$  NF with acetone concentration range of 1–5 ppm at 300 °C (a); Dynamic acetone sensing transient of: (b) pristine  $Co_3O_4$  NFs, (c) 0.1 wt%  $GO-Co_3O_4$  NFs and (d) 1 wt%  $GO-Co_3O_4$  NFs at the concentration of 1 ppm at 300 °C



**Figure S4** Sensing characteristics of GO-Ir composites toward 5 ppm acetone at 300 °C with different weight ratios of GO and Ir. (a) GO:Ir=9:1, (b) GO:Ir=7:3, (c) GO:Ir=5:5, (d) GO:Ir=3:7 and (e) GO:Ir=1:9



**Figure S5** Temperature-dependent response properties in the temperature range of 200–350 °C with 1 wt% Ir-GO-Co<sub>3</sub>O<sub>4</sub> NFs, 2 wt% Ir-GO-Co<sub>3</sub>O<sub>4</sub> NFs, 5 wt% Ir-GO-Co<sub>3</sub>O<sub>4</sub> NFs, and 10 wt% Ir-GO-Co<sub>3</sub>O<sub>4</sub> NFs toward 5 ppm acetone