Supporting Information

Glypolymer-Coated Iron Oxide Nanoparticles: Shape-controlled Synthesis and Cellular Uptake

Xiao Li, Meimei Bao, Yuyan Weng, Kai Yang, Weidong Zhang*, Gaojian Chen*

Figure S1 (a) FTIR and (b) ¹H-NMR (in CD₃OD) spectra of DMA.

Figure S2 XRD patterns of (a) Fe_2O_3 , PMAG and Fe_2O_3 @PMAG particle; (b) Fe_3O_4 , and Fe_3O_4 @PMAG particle.

X-ray diffraction (XRD) was performed on the nanoparticle samples in order to investigate their structure and composition. The position of spindle iron oxide diffraction peaks (2 θ reflections: 24.1, 35.6, 39.2, 49.4, 62.4°) can be indexed as (012), (110), (006), (024) and (214), respectively, indicating a hematite. For Figure S 2b,

the position and relative intensity of all diffraction peaks (2 θ reflections: 30.1, 35.5, 43.1, 57.0, 62.7°) well matched those of the standard PDF cards for magnetite (19-0629) and could be indexed as (220), (311), (400), (511) and (440), respectively. The XRD pattern of glypolymer-coated iron oxide (Figure S2) exhibits the characteristic diffraction peaks of iron oxide, with the observation of the PMAG peaks

Figure S3 EDS spectra of (a) Fe_2O_3 , Fe_2O_3 @DMA and Fe_2O_3 @PMAG particle; (b) Fe_3O_4 @DMA and Fe_3O_4 @PMAG particle.

As show in Figure S3, when the iron oxide was modified with DMA, the peak of element C increased obviously, although the peak of N is not clear for the DMA modified iron oxide, due to the relatively low content. After being further modified with PMAG, the peak for C keep increasing, together with a clear observation of N peaks, indicating the successful modification of PMAG.

Figure S4 Confocal micrographs of RD-Fe₂O₃@PMAG interacting with Hela cells, including fluorescence, transmission and merged images.

Polymers	Concentration	Volume	ICP	Mass	Concentration	Mass ratio	
	(mg L ⁻¹)	(ml)	measured	fraction	of	(%)	
			content of	of Fe	iron oxide		
			Fe	(%)	(mg L ⁻¹)	DMA	PMAG
			(mg L ⁻¹)				
Fe ₂ O ₃ @DMA	2	50	1.319	70.0	1.885	5.76	
Fe ₂ O ₃ @PMAG	2	50	0.953	70.0	1.362		26.14
Fe ₃ O ₄ @DMA	2	50	1.420	72.4	1.961	1.20	
Fe ₃ O ₄ @PMAG	2	50	1.155	72.4	1.595		19.00

Table S1 Fe concentration and mass fraction of polymer in glyco-nanoparticles

solution determined with the aid of ICP.

Fig. S3 SEM micrograph of Fe₂O₃@PMAG and Fe₃O₄@PMAG.

Table S2 Volume calculations of Fe₂O₃@PMAG, Fe₃O₄@PMAG. (a,b,c* estimated

Shape	Side length			Density	Formula	Volume
	(nm)			(g cm ⁻³)		(m ³)
Spindle	а	b	c	5.24	$D = \frac{2}{2} \cdot \pi abc$	6.90×10 ⁻²¹
Ĩ	330	100	100		$\frac{D}{3}$	
Cubic		190		5.18	$D = a^3$	6.86×10 ⁻²¹

from the SEM and DLS data)

*For spindle, a, b and c is the average length of the x axis, y axis and z axis. For cubic, a is the average length of the x axis, also, a, b, c is equal.