
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

Compatibility Balanced Antibacterial Modification Based on Vapor-Deposited Parylene Coatings for Biomaterials

Chih-Hao Chang,^a Shu-Yun Yeh,^b Bing-Heng Lee,^a Che-Wei Hsu,^a Yung-Chih Chen,^b Chia-Jie Chen,^a Ting-Ju Lin,^b Mark Hung-Chih Chen,^a Ching-Tsan Huang,^c Hsien-Yeh Chenb,^{*}

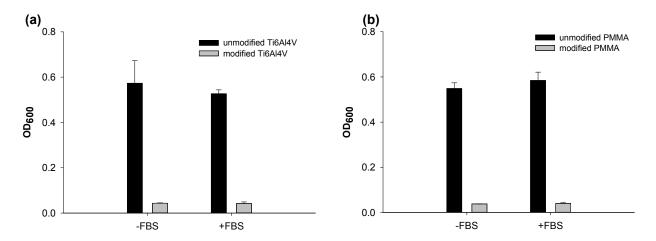


Figure S1. *E. cloacae* biofilm was formed on Ti6Al4V and PMMA substrates after 48 hrs, and was confirmed by using a biochemical CV assay test. (a) Images of the tested samples during a 48-hr time frame of biofilm formation. (b) Statistical analysis of the tested samples; experiments were performed in three replicates.

^a Department of Orthopedic Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10018, Taiwan.

^b Institute of Biotechnology, National Taipei University of Technology, Taipei 10617 (Taiwan)

Figure S2. Antibacterial activities of CHX-benzoyl-PPX-modified (a) Ti6Al4V and (b) PMMA surfaces were tested in preconditioned medium containing FBS (+) or without FBS (-). Unmodified Ti6Al4V and PMMA were used as control surfaces. The growth of *E. cloacae* on these surfaces was analyzed after 24 hrs, and experiments were performed in three replicates.