Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2014

SUPPLEMENTARY INFORMATION

Light-triggered and cysteine-mediated nitric oxide release from a biodegradable starch-based film

Antonio Carlos Roveda Jr.[†], Helena de Fazio Aguiar[#], Katrina M. Miranda[‡],

Carmen Cecília Tadini[#], *Douglas Wagner Franco*[†]*.

[†]Instituto de Química de São Carlos, Universidade de São Paulo – USP, P.O.Box 780, CEP 13566-590, São Carlos, SP, Brazil

[#]Department of Chemical Engineering, Escola Politécnica, University of São Paulo, Av. Prof. Luciano Gualberto, Travessa 3, nº 380, São Paulo, SP, Brazil

[‡]Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States

Corresponding Author

*E-mail: douglas@iqsc.usp.br

Figure S1. FT-IR spectra of native and modified (crosslinked with 15% STMP) starch.

Fig. S2. FT-IR cell holder used for photolysis of CS films.

Fig. S3. FT-IR of CS_x -RuNOisn with different RuNOisn contents/film (in µmol of RuNOisn/film). Concentrations of 5, 10, 15, 20, 30, 50 µmol RuNOisn/film are represented respectively by the spectra with labels "*a*" to "*f*". Inset: plot of RuNOisn content/film *vs.* NO stretch absorbance, $R^2 = 0.9905$.

Fig. S4. Photograph of a cassava starch film containing *trans*-[Ru^{II}(NH₃)₄(isn)(NO⁺)](BF₄)₃.

Fig. S5. Spectral changes during photolysis of CS film containing *trans*-[Ru(NH₃)₄(isn)(¹⁵NO⁺)]. Conditions: $\lambda_{irr} = 355$ nm, 5 mJ/pulse.

Fig. S6. Spectral changes during photolysis of a solution containing oxyMb and a ruthenium-free CS film. Conditions: 1 cm² of ruthenium-free CS film and 5.8 μ M of oxyMb in a phosphate buffer solution (pH 7.4, 100 mM); 1000 laser pulses, $\lambda_{irr} = 355$ nm, 5 mJ/pulse, T = 2 °C.

Fig. S7. (A) Spectral changes during a second cycle of irradiation of CS_{50} -RuNOisn ($\lambda_{irr} = 355$ nm, 5 mJ/pulse). The inset shows the changes in the absorbance at 1935 cm⁻¹ during photolysis. (B) Second regeneration of photolyzed CS_{50} -RuNOisn after reaction with 1.0 mM nitrite.

Fig. S8 – Photolysis of a ruthenium-free starch-based film dipped in aqueous nitrite solution. Conditions: Film immersed in solution of sodium nitrite (10.0 mM) for 20 min. Photolysis: $\lambda_{irr} = 355$ nm, 5mJ/ pulse, a pulse every 2 seconds.

Fig. S9. (A) Real time NO release profile and **(B)** plot of t[NO] *vs.* time for cysteine-initiated NO release from **RuNOisn**. Conditions: 1.77 µmol of **RuNOisn**, TRIS buffer 0.150 M, 5 mM EDTA, pH 7.4 at 37 °C. [NO]_{max} = maximum flux of NO release; t[NO]_{max} = the time until [NO]_{max}.