Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2014

Fig. S1 SFS of a 25 μ m² area before (1) and after (2) exposure to PBS. Topography (A) is overlaid with modulus (B), adhesion force (C) and dispersion force (D).

Table S1 Contact angle analysis of spin-coated films

	Static contact angle (°) ^b		
Thickness (nm) ^a	15 sec	1 min	2 min
$101 \pm 4^{\circ}$	116 ± 1	115 ± 1	114 ± 1
143 ± 1^{d}	114 ± 3	113 ± 3	112 ± 3
341 ± 2^{e}	119 ± 1	91 ± 19	56 ± 4
553 ± 1°	118 ± 1	58 ± 1	50 ± 0
$703\pm4^{\text{e}}$	106 ± 6	55 ± 1	48 ± 1

^aDetermined via ellipsometry (Alpha-SE, JA Woollman) ^bDetermined via contact angle (CAM200, KSV Instruments) ^c Coatings formed via spin-coating (3000 rpm) from 3 drops of a 1 wt% hexane solution comprised of the PEO-silane amphiphile (9 wt% based on MED-1137). ^d Coatings formed via spin-coating (3000 rpm) from 1 drop of a 2 wt% hexane solution comprised of the PEO-silane amphiphile (17 wt% based on MED-1137). ^cCoatings formed via spin-coating (3000 rpm) from 1, 2 and 3 drops of a 5 wt% hexane solution comprised of the PEO-silane amphiphile (17 wt% based on MED-1137).

Table S2 Metrics of reorganization kinetics

	Metric	Definition
Height & Surface Area	$\Delta Z (nm)$	Z range
	$A_{surf}\left(\mu m^2\right)$	Projected surface area
Roughness	RMS _z (nm)	Root-mean-squared Z variation
	σ_{Z} (nm)	Z standard deviation
Phase	ΔPh (degrees)	Phase range
	$RMS_{Ph} \left(degrees \right)$	Root-mean-squared phase variation
	$\sigma_{Ph} (degrees)$	Phase standard deviation
Amplitude	ΔAmp (mV)	Median amplitude differential
	$\sigma_{Amp}\left(mV\right)$	Amplitude standard deviation