Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2014

Supporting Information

For

A Benzothiazole-Based Sensor for Pyrophosphate (PPi) and ATP: Mechanistic Insight for Anion-Induced ESIPT Turn-On

Junfeng Wang,^a Xiumin Liu,^a Yi Pang^{*a,b}

^aDepartment of Chemistry & ^bMaurice Morton Institute of Polymer Science, The University of Akron, Akron, Ohio 44325 U.S.A.

Synthesis of aldehyde II

Di-aldehyde synthesized Π was by а modified procedure: 2-(2'hydroxyphenyl)benzothiazole I (570 mg), purchased from Alfa Acesar (CAS: 3411-95-8), was dissolved in CF₃COOH (12.0 mL), then hexamethylenetetramine (770 mg) was added in one portion. The resulting mixture was refluxed and monitored by TLC until the starting material I disappeared. Then 25 mL water was added slowly and the resulting mixture was refluxed for another 10 mins. Product II precipitated out and was achieved by simple filtration as pure product in almost quantitative yield, which was further purified with a short pad of silica in >90% yield as a light yellow solid. ¹H NMR (300 MHz, DMSO): 10.60 (1H, s), 10.00 (1H, s), 8.56 (1H, s), 8.41 (1H, s), 8.06 (1H, d, J =8.4 Hz), 7.98 (1H, d, J = 8.1 Hz), 7.59 (1H, tri, J = 7.5 Hz), 7.53 (1H, tri, J = 7.5 Hz).

Compound **1** was achieved using our previously reported method (*Org. Lett.* **2011**, *13*, 1362.) in 27% yield as light yellow syrup. ¹H NMR (300 MHz, CDCl3): 8.53 (4H, m), 8.02 (1H, d, *J* = 8.1 Hz), 7.95 (1H, s), 7.93 (1H, d, *J* = 8.1 Hz), 7.61-7.57 (7H, m), 7.54-7.46 (3H, m), 7.39 (1H, tri, *J* = 7.2 Hz), 7.17-7.09 (4H, m), 3.94 (4H, s), 3.92 (2H, s), 3.86 (4H, s), 3.71 (2H, s). ¹³C NMR (75 MHz, CDCl₃): 167.4, 159.7, 159.1, 155.6, 152.0, 136.5, 136.4, 134.2, 133.6, 129.4, 128.2, 126.2, 125.9, 124.9, 122.9, 122.3, 122.0, 121.9, 121.4, 117.9, 59.9, 59.8, 57.9, 54.2. TOF-MS-ES⁺ (m/z): calcd for C25H20N₇O2, [M+H⁺]⁺, 650.2702, found, 650.3146; TOF-MS-ES⁺ (m/z): calcd for C25H19N₇O2Na, [M+Na⁺]⁺, 672.2521, found, 672.2971.

Fig. S1 Fluorescence response of Zn complex 4 (10 μ M) with different anions (50 μ M) in ethanol (a) and different anions (2 mM) in water (b), while the dye was excited at the isobestic point ~357 nm.

Fig. S2 UV-vis (left) and fluorescence (right) titration of zinc complex 4 (10 μ M) upon addition of different equiv of H₂PPi in MeOH, which reveals that 1.0 equiv of H₂PPi is enough to turn on the ESIPT.

Fig. S3 Fluorescence response of 4 (10 μ M) with different concentrations of H₂ATP in water (excited at the isobestic point ~357 nm).

Fig. S4 Fluorescence response of 4 (10 μ M) upon addition of different anions (2 mM) in HEPES buffer (10 mM, pH = 7.2) excited at ~357 nm.

Fig S5 ¹H NMR titration of **2** upon addition of different equiv. of Zn^{2+} in CD₃OD.

Fig. S6a ¹H NMR spectra of dye **2** and its zinc complex **4** upon addition of H_2PPi in CD_3OD .

Fig. S6b ¹H NMR spectra of **2** and its zinc complex **3** upon addition of H₂PPi in CD₃OD.

Fig. S7 TOF-MS-ES⁺ of compound **2**.

Fig. S8 TOF-MS-ES⁺ of compound **2** upon addition of 1.0 equiv of Zn^{2+} in MeOH.

Fig. S9 TOF-MS-ES⁺ of compound **2** upon addition of 2.0 equiv of Zn^{2+} in MeOH.

Fig. S10 TOF-MS-ES⁺ of 4-PPi adducts (obtained in MeOH).

Fig. S11 TOF-MS-ES⁺ of **4-ATP** adducts (obtained in water)