Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information (ESI)

A unique dansyl-based chromogenic chemosensor for rapid and ultrasensitive hydrazine detection

Xuan-Xuan Zhao^a, Jin-Feng Zhang^b, Wei Liu^a, Shuai Zhou^a, Ze-Quan Zhou^a, Yu-Hao Xiao^a, Gang Xi^a, Jun-Ying Miao^{b,*}, Bao-Xiang Zhao^{a,*}

Contents

- 1. Determination of fluorescence quantum yield.
- 2. Calculation of the detection limit.
- 3. Table S1. Crystal data and structure refinement parameters of the probe DPI.
- 4. Supporting Figures S1-S12.
- 5. Table S2. Determination of hydrazine in real samples by probe DPI.
- 6. Characterization data IR, ¹H & ¹³C NMR, HRMS.
- 7. References.

1. Determination of fluorescence quantum yield [S1]

The quantum yield (Φ) was calculated using the following equation [1]

$$\Phi_{\rm x} = \Phi_{\rm s} \left(F_{\rm x}/F_{\rm s} \right) \left(A_{\rm s}/A_{\rm x} \right) \left(n_{\rm x2}/n_{\rm s2} \right),$$

where, X and S indicate the unknown and standard solution respectively, Φ = quantum yield, F = area under the emission curve, A = absorbance at the excitation

wavelength and n = index of refraction of the solvent. Φ measurements were performed using fluorescein in 0.1 N sodium hydroxide as standard (Φ = 0.85). Using this equation, we calculated the Φ of the solution in the absence and presence of hydrazine to be 0.093 and 0.498, respectively. The remarkably increase of the Φ may be due to the fine optical properties of dansyl fluorophore.

2. Calculation of the detection limit [S2]

The detection limit (DL) of **DPI** for hydrazine was determined as follows [2]:

$$DL = K \times Sb1/S$$
,

where K = 3, Sb1 is the standard deviation of the blank solution and S is the slope of the calibration curve. From the formula and calibration curve constructed for the determination of hydrazine, we get DL = 1.88×10^{-7} M for emission and 1.9×10^{-6} μ M for absorbance, respectively. Under the optimal condition (5 μ M probe for emission and 100 μ M for absorbance, DMSO/H₂O = 9/1, 1 h reaction time, excitation/emission at 353 nm/512 nm at room temperature), the linear range for emission and absorbance were 0 - 5.0 μ M (R² = 0.9911, n = 10) and 0 - 100 μ M (R² = 0.9991, n = 10), respectively. Note that fluorescent DL (6.01 ppb) is much lower than the TLV (10 ppb) set by the EPA.

The detection limit based on IUPAC (CDL =3Sb/m) was calculated according to 10 blank measurements. The relationship between the absorbance ratio $A_{365 nm}/A_{332 nm}$ and hydrazine concentration is: $y = 1.036 \times 10^4 x + 0.77954$, where y is the

absorbance ratio $A_{365 \text{ nm}}/A_{332 \text{ nm}}$ and x is the [N₂H₄]. The relationship between the fluorescence intensity I_{512 nm} and [N₂H₄] is: $y=9.5 \times 10^7 \text{ x} + 52.52$, where y is the fluorescence intensity at 512 nm and x is [N₂H₄].

Formula	$\mathrm{C_{20}H_{16}N_2O_4S}$	
Formula Weight	380.42	
Temperature (K)	293K	
Wavelength (Å)	0.71073	
Space group	Pbca	
Unit cell dimensions (Å, $^\circ$)	a = 10.0878 (14) b = 12.7641 (16) c = 28.139 (4)	$\begin{array}{l} \alpha = 90\\ \beta = 90\\ \gamma = 90 \end{array}$
Volume (Å ³)	3623.2 (9)	
Calculated density, (g cm ⁻³⁾	1.395	
F (000)	1584.0	
Goodness-of-fit on F ²	1.314	
R indices	R1 = 0.0448	wR2 = 0.1197

3. Table S1. Crystal data and structure refinement parameters of the DPI.

4. Supporting Figures:

.

Figure S1. (a) Plot of absorption ratios at 332 nm and 365 nm ($A_{332 nm} / A_{365 nm}$) of **DPI** (100 μ M) related to the equivalents of hydrazine (0 -3 eq) (b) Plot of emission intensity at 512 nm of **DPI** (5 μ M) related to the equivalents of hydrazine (0 - 3 eq)

Figure S2. (a) The response of **DPI** (5 μ M) in the presence of various analysts (25 μ M). ($\lambda_{ex} = 353$ nm , $\lambda_{em} = 512$ nm) (b) The response of **DPI** (5 μ M) in the presence of various amines (25 μ M) and hydrazine (5 μ M). ($\lambda_{ex} = 353$ nm , $\lambda_{em} = 512$ nm)

Figure S3. Solvent-dependent of **DPI** in the absence and presence of hydrazine. [**DPI**] = 5 μ M, [N₂H₄] = 10 μ M in a mixture of HEPES buffer (pH 7.0, 20 mM) and DMSO at rt. (λ_{ex} = 353 nm , λ_{em} (**DPI** + N₂H₄) = 512 nm, λ_{em} (**DPI**) = 475 nm)

Figure S4. Time-dependent of probe **DPI** in the absence and presence of hydrazine. [**DPI**] = 5 μ M, [N₂H₄] = 10 μ M in a mixture of HEPES buffer (pH 7.0, 20 mM) and DMSO (1/9, v/v) at rt. (λ_{ex} = 353 nm , λ_{em} (**DPI** + N₂H₄) = 512 nm, λ_{em} (**DPI**) = 475 nm)

Figure S5. Absorbance (a) and Fluorescence emission spectra (b) of Dansyl-NH₂ in the absence and presence of hydrazine in a mixture of HEPES buffer (pH 7.0, 20 mM) and DMSO.

Figure S6. Absorbance (a) and Fluorescence emission spectra (b) of probe **DPI** in the absence and presence of hydrazine and Dansyl-NH₂ in a mixture of HEPES buffer (pH 7.0, 20 mM) and DMSO (1/9, v/v) at rt.

Figure S7. Cytotoxicity of **DPI** to HeLa cells. HeLa cells were incubated with 5 and 10 μ M **DPI** for 6 h respectively. The cell viability was investigated by SRB assay.

Water Samples	Hydrazine Added (µM)	Found (µM)	Recovery (%)	RSD ^a (%)
	1.5	1.52	101.3	2.2
Yellow Water	2.5	2.34	93.6	2.0
	3.5	3.48	99.3	3.1
	4.5	4.51	100.2	3.0
	1.5	1.47	98.0	1.5
Tap Water	2.5	2.52	100.8	1.3
	3.5	3.55	101.4	2.2
	4.5	4.63	102.8	2.4

5. Table S2. Determination	of hydrazine in real	l samples by probe DPI.
----------------------------	----------------------	-------------------------

a: Relative Standard Deviation of 3 individual measurements.

6. Characterization data for DPI

Figure S8. ¹H NMR spectrum of (a) pure **DPI** (20 mM), (b) probe **DPI** (20 mM) with the addition of hydrazine (1.0 equiv), and (c) Dansyl-NH₂ (20 mM)

Figure S9. IR spectrum of DPI

Figure S11. ¹³C NMR spectrum of **DPI** in DMSO

Figure S12. HRMS spectrum of DPI

7. References:

- [1] C. A. Parker and W. T. Rees, Analyst, 1960, 85, 587-600.
- [2] B. Zhu, C. Gao, Y. Zhao, C. Liu, Y. Li, Q. Wei, Z. Ma, B. Du and X. Zhang,
- Chem. Commun., 2011, 47, 8656-8658.