Supplementary Information

Multifunctional Biodegradable Mesoporous Microspheres of Eu³⁺-doped Amorphous Calcium Phosphate: Microwave-Assisted Preparation, pH-Sensitive Drug Release and Bioimaging

Feng Chen,^{*a,b*} Peng Huang,^{*b*} Chao Qi,^{*a*} Bing-Qiang Lu,^{*a*} Xin-Yu Zhao,^{*a*} Chao Li,^{*b*} Jin Wu,^{*a*} Da-Xiang Cui*^{*b*} and Ying-Jie Zhu*^{*a*}

^{*a*} State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China. E-mail: y.j.zhu@mail.sic.ac.cn

^b Department of Bio-Nano Science and Engineering, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China. E-mail: dxcui@sjtu.edu.cn

Figure S1. SEM micrographs of Eu^{3+} -doped ACP mesoporous microspheres prepared using ATP as an organic phosphate source by the microwave-assisted solvothermal method with different Eu^{3+} doping concentrations relative to Ca^{2+} : (a,b) 0; (c,d) 2.5 mol %; (e,f) 5 mol %; (g,h) 10 mol %.

Figure S2. The FTIR spectra of the pure ATP and 5 mol % Eu³⁺-doped ACP mesoporous microspheres prepared using ATP as an organic phosphate source by the microwave-assisted solvothermal method.

Figure S3. Hydrodynamic size distributions of Eu^{3+} -doped ACP mesoporous microspheres with different Eu^{3+} doping concentrations relative to Ca^{2+} prepared using ATP as an organic phosphate source by the microwave-assisted solvothermal method: (a) 0; (b) 2.5 mol %; (c) 5 mol %; (d) 10 mol %.

Figure S4. The nitrogen adsorption-desorption isotherms and the corresponding Barrett-Joyner-Halenda (BJH) pore size distributions of Eu^{3+} -doped ACP mesoporous microspheres with different doping concentrations relative to Ca²⁺: (a,b) 0; (c,d) 2.5 mol %; (e,f) 5 mol %; (g,h) 10 mol %.