Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2014

Supporting information

Title: Coacervate-directed synthesis of CaCO₃ microcarriers for pH-responsive delivery of biomolecules

Journal of Materials Chemistry B

Authors: Victor Lauth,^a Michael Maas,^a Kurosch Rezwan^a

 Advanced Ceramics, University of Bremen Am Biologischen Garten 2, 28359
Bremen, Germany

Figure S1. Size-distribution of the native coacervate droplets at different complexation time points. The tail is located at the large diameter side of the curve, which suggests the coalesce grow mechanism.

Figure S2. Zeta-potential of coacervates droplets at pH 9. The zeta-potential decreases with the increase of negatively charged PAA.

Figure S3. SEM, TEM and HAADF-STEM of fully mineralized microcarriers (a) and hollow capsules (b).

Figure S4. Comparison of X-ray diffraction patterns of native, BSA and LSZ-loaded microcarriers.