Supporting Information

Phosphorescent iridium(III) complexes as multicolour probes for imaging of hypochlorite ion in mitochondria

Guanying Li,[‡] a Qian Lin,[‡] a Liangnian Ji and Hui Chao* a

a:MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China. * E-mail: <u>ceschh@mail.sysu.edu.cn</u>; Fax: 86-20-84112245; Tel: 86-20-84110613 *‡*: These authors contributed equally to this work.

Scheme S1 Synthesis of ligand.

Synthesis of 4-methyl-2, 2'-bipyridine-4'-Diaminomaleonitrile (bpy-damn)

A mixture of 2,3-diaminomaleonitrile (1.2 mmol), **bpy-CHO** (1.0 mmol) in 20 mL of absolute ethanol containing two drops of acetate acid as a catalyst were stirred for 3 hours at room temperature. When the material disappeared, the reaction was terminated. The solution was poured into distilled water, and the resulting residue was filtered, further purified by chromatography on silica using CH₂Cl₂/CH₃OH (v/v, 5:1) as eluent to get the damn. Yield: 264.4 mg, 97.71%. ESI-MS (CH₃OH) m/z: 288.9 [M+H]⁺. ¹H NMR (300 MHz, DMSO-d6) δ 8.71 (s, 2H), 8.54 (d, J = 4.8 Hz, 1H), 8.36 – 8.27 (m, 3H), 8.21 (s, 1H), 8.06 (d, J = 5.1 Hz, 1H), 7.29 (d, J = 4.5 Hz, 1H), 2.49 (s, 3H).

Scheme S2 Synthesis of iridium complexes.

Synthesis of iridium complexes (Ir1~Ir8)

The complexes Ir1~Ir8 were synthesized in a similar manner. Briefly, a mixture of 2ethoxyethanol and water (3:1, v/v) was added to a flask containing IrCl₃ (1.0 mmol) and the C^N ligands (C^N = dfppy, 2-pq, bzq, dbq, 2.5 mmol). The mixture was refluxed for 24 h. After cooling, the precipitate was filtered to give crude cyclometalated Ir(III) chloro-bridged dimer, which can be utilized for the next step without further purification. The chloro-bridged dimer (0.10 mmol) and N^N ligand bpy-damn or bpy-COOH (0.2 mmol) were placed in a 50 mL round bottomed flask with 20 mL of methanol and trichloromethane (1:1, v/v). The mixture was heated at 65 °C for 6 h under argon. After 6 h reflux, the solvent was evaporated under reduced pressure, and the crude product was purified by column chromatography on silica with CH₂Cl₂-MeOH (10:1, v/v) as eluent, and then recrystallized with CH₂Cl₂/hexane to get iridium complexes (yield=35~55%). Ir1: Anal.Calc.for C₃₈H₂₄F₄IrN₈Cl (%): C, 50.92; H, 2.71; N, 12.50. Found(%): C, 51.62; H, 2.24; N, 12.19. ESI-MS (CH₃OH): m/z 861.0 [M-Cl⁻]⁺. ¹H NMR (300 MHz, DMSO- d_6) δ 9.34 (s, 1H), 8.99 (s, 1H), 8.80 (s, 2H), 8.32 (s, 1H), 8.27 (d, J = 8.7 Hz, 2H), 8.16 (d, J = 5.7 Hz, 1H), 8.00 (t, J = 7.5 Hz, 2H), 7.86 (d, J = 5.7 Hz, 1H), 7.73 (t, J = 4.5 Hz, 2H), 7.69 (d, J = 5.7 Hz, 1H), 7.55 (d, J = 5.4 Hz, 1H), 7.22 (dd, J = 14.4 Hz, 2.4 Hz, 2H), 6.96 (t, J = 9.0 Hz, 2H), 5.60 (t, J = 5.7 Hz, 2H), 2.58 (s, 3H).

Ir2: Anal.Calc.for C₄₆H₃₂IrN₈Cl (%): C, 59.76; H, 3.49; N, 12.12. Found(%): C, 60.34; H, 3.52; N, 12.15. ESI-MS (CH₃OH): m/z 889.1 [M-Cl⁻]⁺. ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.92 (s, 1H), 8.67 (s, 2H), 8.54 (t, 4H), 8.27 (d, *J* = 7.8 Hz, 2H), 8.13 (t, 1H), 8.02 (s, 1H), 7.90 (t, 3H), 7.52 (d, *J* = 5.4 Hz, 1H), 7.40 (t, *J* = 7.5 Hz, 3H), 7.15 (m, 6H), 6.80 (t, *J* = 7.4, 3.2 Hz, 3H), 6.39 (d, *J* = 7.8 Hz, 2H), 2.43 (s, 3H).

Ir3: Anal.Calc.for C₄₂H₂₈IrN₈Cl (%): C, 57.82; H, 3.24; N, 12.84. Found(%): C, 57.93; H, 3.47; N, 13.04. ESI-MS (CH₃OH): m/z 837.0 [M-Cl⁻]⁺. ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.36 (s, 1H), 9.00 (s, 1H), 8.76 (s, 2H), 8.55 (d, *J* = 5.7 Hz, 2H), 8.27 (s, 1H), 8.12 - 8.02 (m, 3H), 7.95 (d, *J* = 8.7 Hz, 2H), 7.87 (d, *J* = 8.7 Hz, 2H), 7.76 (d, *J* = 5.7 Hz, 1H), 7.66 (d, *J* = 5.7Hz, 1H), 7.62 - 7.55 (m, 2H), 7.53 (d, *J* = 8.4 Hz, 2H), 7.43 (d, *J* = 5.7 Hz, 1H), 7.16 (t, *J* = 7.5 Hz, 2H), 6.20 (d, *J* = 7.2 Hz, 2H), 2.55 (s, 3H).

Ir4: Anal.Calc.for C₄₈H₃₀IrN₁₀Cl (%): C, 61.39; H, 3.22; N, 14.92. Found(%): C, 61.97; H, 3.09; N, 15.21. ESI-MS (CH₃OH): m/z 939.0 [M-Cl⁻]⁺. ¹H NMR (300 MHz, DMSO- d_6) δ 9.37 (s, 1H), 9.14 (d, *J* = 1.8 Hz, 2H), 9.00 (s, 1H), 8.85 - 8.75 (m, 7H), 8.31 (d, *J* = 6.6 Hz, 3H), 8.24 (d, *J* = 3.0 Hz, 1H), 8.18 (d, *J* = 3.0 Hz, 1H), 8.09 (d, *J* = 3.6 Hz, 1H), 7.90 (t, *J* = 9.0 Hz, 3H), 7.85 (t, *J* = 6.0 Hz, 3H), 7.74 (d, *J* = 5.7 Hz, 1H), 7.47 (d, *J* = 5.7Hz, 1H), 7.29 (t, *J* = 7.8 Hz, 2H), 6.44 (d, *J* = 7.2 Hz, 2H), 2.56 (s, 3H).

Ir5: Anal.Calc.for C₃₄H₂₂F₄IrN₄O₂Cl (%): C, 49.67; H, 2.70; N, 6.81. Found(%): C, 50.04; H, 2.52; N, 7.15. ESI-MS (CH₃OH): m/z 786.6 [M-Cl⁻]⁺. ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.92 (s,

S3

1H), 8.85 (s, 1H), 8.25 (d, *J* = 8.1 Hz, 2H), 7.99 (t, *J* = 10.2 Hz, 2H), 7.82 (t, *J* = 5.7 Hz, 2H), 7.67 (t, *J* = 6.1 Hz, 3H), 7.46 (d, *J* = 5.1 Hz, 1H), 7.20 (t, *J* = 5.7 Hz, 2H), 6.98 - 6.87 (t, *J* = 5.4 Hz, 2H), 5.59 (d, *J* = 10.4 Hz, 2H), 2.53 (s, 3H).

Ir6: Anal.Calc.for C₄₂H₃₀IrN₄O₂Cl (%): C, 59.32; H, 3.56; N, 6.59. Found(%): C, 59.53; H, 3.75; N, 6.65. ESI-MS (CH₃OH): m/z 814.6 [M-Cl⁻]⁺. ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.57-8.45 (m, 4H), 8.41 (s, 1H), 8.27 - 8.23 (m, 2H), 7. 99 (d, *J* = 6.0 Hz, 1H), 7.92 - 7.84 (m, 3H), 7. 75 (d, *J* = 6.0 Hz, 1H), 7.45 - 7.29 (m, 4H), 7.19 - 7.02 (m, 6H), 6.77 (t, *J* = 7.5 Hz, 2H), 6.36 (dd, *J* = 12.0 Hz, 9.0 Hz, 2H), 2.38 (s, 3H).

Ir7: Anal.Calc.for $C_{38}H_{26}IrN_4O_2Cl$ (%): C, 57.17; H, 3.28; N, 7.02. Found(%): C, 57.64; H, 3.32; N, 7.12; O, 4.36. ESI-MS (CH₃OH): m/z 762.8 [M-Cl⁻]⁺. ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.96 (s, 1H), 8.86 (s, 1H), 8.53 (d, *J* = 8.1 Hz, 2H), 8.04 (d, *J* = 5.4 Hz, 2H), 7.89 (dd, *J* = 24.9, 9.3 Hz, 4H), 7.74 (q, *J* = 5.7 Hz, 2H), 7.61 - 7.55 (m, 3H), 7.50 (d, *J* = 6.0 Hz, 2H), 7.35 (d, *J* = 5.7 Hz, 1H), 7.13 (t, *J* = 7.5 Hz, 2H), 6.17 (t, *J* = 6.9 Hz, 2H), CH3 (~2.5 ppm), coverd by solvent peak.

Ir8: Anal.Calc.for C₄₄H₂₈IrN₆O₂Cl (%): C, 58.69; H, 3.13; N, 9.33. Found(%): C, 58.64; H, 3.42; N, 9.37. ESI-MS (CH₃OH): m/z 864.8 [M-Cl⁻]⁺. ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.12 (d, *J* = 7.5 Hz, 2H), 9.00 (s, 1H), 8.91 (s, 1H), 8.80 (dd, *J* = 9.0, 6.0 Hz, 3H), 8.28 (d, *J* = 8.1 Hz, 2H), 8.15 (dd, *J* = 7.2, 3.0 Hz, 2H), 7.95 - 7.75 (m, 7H), 7.67 (d, *J* = 5.4 Hz, 1H), 7.39 (d, *J* = 5.7 Hz, 1H), 7.25 (t, *J* = 7.6 Hz, 3H), 6.40 (t, *J* = 6.9 Hz, 2H), 2.51 (s, 3H).

Reaction of Ir1-Ir4 with ClO⁻ (Ir5'-Ir8')

A mixture of the iridium(III) complexes **Ir1-Ir4** (0.01 mmol) and NaClO (1 mmol) were suspended in 10 mL CH₃CN-H₂O solution (9:1, v/v) at room temperature. The reaction quantitatively afforded one major product for 30 min. The crude product was successfully purified using chromatography on a silica gel column and the structure of the isolated product was confirmed using ¹H NMR spectroscopy and mass analysis.

Ir5': ES-MS (CH₃OH): m/z 786.6. ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.36 (s, 1H), 9.14 (s, 1H), 8.26 (d, *J* = 8.7 Hz, 2H), 8.01 (t, *J* = 7.8 Hz, 2H), 7.83 (d, *J* = 5.7 Hz, 1H), 7.76 – 7.65 (m, 4H), 7.52 (d, *J* = 5.4 Hz, 1H), 7.22 (dd, *J* = 13.2, 6.3 Hz, 2H), 6.94 (t, *J* = 12.0 Hz, 2H), 5.59 (d, *J* = 8.1 Hz, 2H), 2.57 (s, 3H).

Ir6': ES-MS (CH₃OH): m/z 814.7. ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.94 (s, 1H), 8.63 (s, 1H), 8.58 - 8.44 (m, 4H), 8.25 (dd, *J* = 7.5, 4.8 Hz, 2H), 8.12 (s, 1H), 7.99 (d, *J* = 5.4 Hz, 1H), 7.94 - 7.83 (m, 3H), 7.50 (d, *J* = 5.7 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 2H), 7.26 - 7.03 (m, 6H), 6.77 (t, *J* = 6.0 Hz, 2H), 6.37 (d, *J* = 7.8 Hz, 2H), 2.42 (s, 3H).

Ir7': ES-MS (CH₃OH): m/z 762.6. ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.34 (s, 1H), 9.02 (s, 1H), 8.53 (d, J=5.4, 2H), 8.08 (dd, *J* = 6.0, 2.4 Hz, 2H), 7.98 (d, *J* = 5.1 Hz, 1H), 7.90 (dd, *J* = 15.0, 7.8 Hz, 4H), 7.75 (d, *J* = 5.7 Hz, 1H), 7.65-7.50 (m, *J* = 24.0, 5H), 7.40 (d, *J* = 5.7 Hz, 1H), 7.14 (t, *J* = 7.5 Hz, 2H), 6.19 (d, *J* = 7.2 Hz, 2H), 2.53 (s, 3H).

Ir8': ES-MS (CH₃OH): m/z 864.8. ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.41 (s, 1H), 9.14 (d, *J* = 8.1 Hz, 3H), 8.89 – 8.74 (m, 4H), 8.31 (d, *J* = 8.4 Hz, 2H), 8.25 (d, *J* = 3.3 Hz, 1H), 8.18 (d, *J* = 3.0 Hz, 1H), 8.03 (d, *J* = 6.0 Hz, 1H), 7.90 (dt, *J* = 15.0, 7.8 Hz, 5H), 7.73 (d, *J* = 5.4 Hz, 1H), 7.46 (d, *J* = 6.0 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 2H), 6.44 (d, *J* = 7.2 Hz, 2H), 2.57 (s, 3H).

Fig. S1 ESI-MS spectra of Ir1 +ClO⁻ (Ir5') in CH₃OH solutions.

Fig. S2 ¹H NMR spectra of Ir1 +ClO⁻ (Ir5') in d_6 -DMSO, 300 MHz.

Fig. S3 ESI-MS spectra of Ir2 +ClO⁻ (Ir6') in CH₃OH solutions.

Fig. S4 ¹H NMR spectra of Ir2 +ClO⁻ (Ir6') in d_6 -DMSO, 300 MHz.

Fig. S5 ESI-MS spectra of Ir3 +ClO⁻ (Ir7') in CH₃OH solutions.

Fig. S6 ¹H NMR spectra of **Ir3** +ClO⁻ (**Ir7**') in d_6 -DMSO, 300 MHz.

Fig. S7 ESI-MS spectra of Ir4+ClO⁻ (Ir8') in CH₃OH solutions.

Fig. S8 ¹H NMR spectra of Ir4+ClO⁻ (Ir8') in d_6 -DMSO, 300 MHz.

Fig. S9 The absorption (solid line: λ =300-450 nm) and emission (dash line: λ =450-800 nm) spectra of Ir1~Ir4 (black), Ir1~Ir4 + ClO⁻ (Ir5'~Ir8', red) and Ir5~Ir8 (green) in DMF-PBS (10 mM, pH 7.40, v/v, 3:7) solutions.

Fig. S10 UV-Vis spectral changes of Ir1~Ir4 (10 μ M) in DMF-PBS (10 mM, pH 7.4, v/v, 3:7) by gradual addition of NaClO.

Fig. S11 Emission spectral changes of Ir1~Ir4 (10 μ M) in DMF-PBS (10 mM, pH 7.4, v/v, 3:7) by gradual addition of NaClO.

Fig. S12 The time-dependent emission changes acquired from reaction of Ir1~Ir4 (a~b) (10.0 μ M) in the absence (hollow) and presence (solid) of ClO⁻ in 10 mM PBS buffer solution with pH 7.4 at room temperature.

Fig. S13 The emission intensity of Ir1~Ir4 (a~d) (10 μ M) in the absence (hollow) and presence (solid) of ClO⁻ at various pH values in PBS buffer.

Fig. S14 ¹H NMR spectra Ir1 (a), Ir1 + ClO⁻ (b), Ir1 + ClO⁻ +CF₃SO₃H (c) and Ir5 (d) in d_6 -DMSO solution, 300 MHz.

Fig. S15 ¹H NMR spectra **Ir2** (a), **Ir2** + ClO⁻ (b), **Ir2** + ClO⁻ +CF₃SO₃H (c) and **Ir6** (d) in d_6 -DMSO solution, 300 MHz.

Fig. S16 ¹H NMR spectra **Ir4** (a), **Ir4** + ClO⁻ (b), **Ir4** + ClO⁻ +CF₃SO₃H (c) and **Ir8** (d) in d_6 -DMSO solution, 300 MHz.

Fig. S17 ¹H NMR spectral change of Ir1 reacted with different amount of ClO-.

Fig. S18 ¹H NMR spectral change of Ir2 reacted with different amount of ClO⁻.

Fig. S19 ¹H NMR spectral change of Ir3 reacted with different amount of ClO⁻.

Fig. S20 ¹H NMR spectral change of Ir4 reacted with different amount of ClO⁻.

Fig. S21 Cellular viabilities of HeLa cells (a) and RAW264.7 cells (b) after incubation with different concentrations of iridium(III) complexes for 12 h.