Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2014

Supporting Information

For

Polyacryloyl Hydrazide Based Injectable & Stimuli Responsive Hydrogels with Tunable Properties

Anuj Kumar[†], Sabindra K. Samal[‡], Rupesh Dash[‡] & Umaprasana Ojha^{*,†}

[†]Department of Chemistry, Rajiv Gandhi Institute of Petroleum Technology Raebareli, Ratapur

Chowk, UP-229316, India

[‡]Institute of Life Science, Bhubaneswar, Odisha, India

Figure S1: Photographs of (A) PAH-DTDA, (B) PAH-DEM, (C) PAH-AA and (D) PAH-PEGDA hydrogels.

Figure S2: Swelling ratios at fixed temperature (~25 °C) and different (A) DTDA (B) DEM (C) AA or (D) PEGDA concentrations.

Figure S3: Swelling ratio of the hydrogels synthesized using 0.2 gm/mL of PAH (\rightarrow), 0.3 gm/mL of PAH (\rightarrow) and 0.4 gm/mL of PAH (\rightarrow) and (A) 0.7 mol/L of DTDA (B) 0.7 mol/L of DEM (C) 0.7 mol/L of AA or (D) 0.7 mol/L of PEGDA measured at ~ 25 °C

Figure S4: Swelling ratio of the hydrogels synthesized using 0.3 gm/mL of PAH and (A) 0.7 mol/L of DTDA, (B) 0.7 mol/L of DEM (C) 0.7 mol/L of AA or (D) 0.7 mol/L of PEGDA measured at ~ 25 (\checkmark), 37 (\clubsuit) and 65 (\bigstar) °C.

Figure S5: Schematics showing the type of physical and chemical crosslinking units present in the PAH and (A) DTDA, (B) DEM, (C) AA or (D) PEGDA based hydrogels.

Figure S6: Shear stress versus strain plot of hydrogels recorded at 10 rad/sec angular frequency.

Figure S7: Frequency versus complex viscosity plot of PAH based hydrogels synthesized using 0.3 gm/mL PAH and (A) DTDA, (B) DEM, (C) AA or (D) PEGDA as cross-linker

Figure S8: Viscosity versus shear rate plot of various hydrogels synthesized using 0.3 gm/mL PAH

Figure S9: Photographs depicting the injectability of the PAH (0.2 gm/mL)-AA (0.4 mol/L) hydrogel by (A) 26 and (B) 30 gauge size needle.

Figure S10: Water retention capacities of PAH based hydrogels prepared using various crosslinkers.

Concentration of	PAH-DTDA	PAH-DEM	PAH-AA	Concentration of	PAH-PEGDA
cross linker	(%)	(%)	(%)	cross linker	(%)
1.9 mol/L	97.4	96.7	99.1	0.7 mol/L	96.6
1.3 mol/L	96.9	97.9	98.0	0.4 mol/L	96.7
0.7 mol/L	99.2	98.7	98.5	0.2 mol/L	98.6

 Table S1: In-situ percentage encapsulation of Rhodamine B in PAH based hydrogels

 synthesized using various cross-linkers.

Figure S11: ATR FT-IR spectra of the as synthesized (blue line) DTDA (0.7 mol/L) based hydrogel and the gel after 38 days (green line)

Figure S12: ATR FT-IR spectra of the as synthesized (blue line) PEGDA (0.7 mol/L) based hydrogel and the gel after 38 days (green line)