Convenient and sensitive detection of norfloxacin with fluorescent carbon dots

(Supporting Information)

Figure $\mathbf{S 1}$ (a) Fluorescent microscopy image of CDs under excitation of 360 nm . (b) Atomic force microscopy (AFM) image of CDs. (c) Scanning electron microscopy (SEM) image of CDs.

Figure S2. PL spectra of CDs and CDs-NOR system with NOR concentration of $9.93 \times 10^{-5} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\left(25{ }^{\circ} \mathrm{C}\right.$, $\mathrm{pH}=7.4$, red trace-CDs; black trace-CDsNOR).

Figure S3. FTIR spectrum of hydroxyl -group-free CDs.

Figure S4. PL spectra of CDs, NOR and CDs - NOR system with NOR concentration of $9.77 \times 10^{-5} \mathrm{~mol}^{-1-1}\left(25^{\circ} \mathrm{C}\right.$, $\mathrm{pH}=7.4$, black trace-CDs; red traceNOR; blue trace-CDs-NOR system).

Figure S5. Photographs of CDs solution, NOR solution and CDs-NOR solution with NOR concentration of $9.77 \times 10^{-5} \mathrm{~mol} \cdot \mathrm{~L}^{-1} \quad\left(25{ }^{\circ} \mathrm{C}, \mathrm{pH}=7.4\right)$ under room light (a) and UV lamp (365 nm , center) illumination (b).

Table S1 Comparison of detection limit of different methods for the determination of NOR.

methods	detection limit $(\boldsymbol{\mu M})$	ref
HPLC	1.57	6
reverse phase-HPLC-fluorescent	0.24	10
capillary electrophoresis	0.31	17
SIA	7.95	21
this method $(\mathrm{pH}=5.9)$	0.0133	this work
this method $(\mathrm{pH}=7.4)$	0.038	this work

Table S2. The $\mathrm{I} / \mathrm{I}_{0}$ when CDs were mixed with other substances.

Reagent	Groups	$\mathbf{I} / \mathbf{I}_{\mathbf{0}}$
1,3-Di(4-pyridyl)propane	-N	1.35
Dibenzoyl-L-tartaric acid monohydrate	-COOH	2.30
3,5-Pyridinedicarboxylic acid	$-\mathrm{N},-\mathrm{COOH}$	4.10
flusilazole	$-\mathrm{F},-\mathrm{N}$	6.53
Isonicotinic acid hydrazide	$-\mathrm{N},-\mathrm{CO}$	1.67
1,2,4-Triazole	-N	5.20
Di-P-Toluoyl-L-Tartaric Acid	-COOH	3.43
1,3,5-Benzenetricarboxylic acid	-COOH	1.78
Imidazole	-N	3.45
o-Difluoro Benzene	$-\mathrm{N},-\mathrm{OH}$	8.45
Benzene	-F	10.23
Diamino-6-hydroxypyrimidine	-	0.65

Table S3. The $\mathrm{I} / \mathrm{I}_{0}$ when different amount of hydrazine hydrate was added into the CDs solution.

CDs $(\mathbf{m L})$	Hydrazine Hydrate $(\mathbf{m L})$	Amount of Oxygen-Groups $\left(\mathbf{m o l} \cdot \mathbf{L}^{-1}\right)$	$\mathbf{I} / \mathbf{I}_{\mathbf{0}}$
3	0.00	6.75×10^{-4}	42.39
3	0.10	5.5×10^{-4}	35.45
3	0.20	4.5×10^{-4}	32.35
3	0.30	3.5×10^{-4}	30.32
3	0.40	3×10^{-4}	25.50
3	0.50	2×10^{-4}	23.34
3	0.60	1.5×10^{-4}	15.78

