Thermoresponsive Block Copolymer Micelles with Tunable Pyrrolidone-based Polymer Cores Structure/Property Correlations and Their Application as Drug Carriers

Xiao-Li Sun,^a Pei-Chin Tsai,^b Rajani Bhat,^a Edward M. Bonde,^c Bozena Michniak-Koh^b, Agostino Pietrangelo^{*,a}

Supplementary Information

Table of Contents

Figure S 1. ¹ H NMR spectrum of (500 MHz, CDCl ₃ , 25 °C) of PNIPAAm-CTA5
Figure S 2. ¹ H NMR spectrum of (500 MHz, CDCl ₃ , 25 °C) of PNIPAAm ₇₂ -PBNP ₇₃ 5
Figure S 3. ¹ H NMR spectrum of (500 MHz, CDCl ₃ , 25 °C) of PNIPAAm ₇₂ -PBNP ₂₆ 6
Figure S 4. ¹ H NMR spectrum of (500 MHz, CDCl ₃ , 25 °C) of PNIPAAm ₇₂ -PMNP ₇₈ 6
Figure S 5. ¹ H NMR spectrum of (500 MHz, CDCl ₃ , 25 °C) of PNIPAAm ₇₂ -PMNP ₂₉ 7
Figure S 6. 1H NMR spectrum of (500 MHz, CDCl3, 25 °C) of PNIPAAm72-PNP797
Figure S 7. ¹ H NMR spectrum of (500 MHz, CDCl ₃ , 25 °C) of PNIPAAm ₇₂ -PNP ₂₉ 8
Figure S 8. GPC trace of PNIPAAm ₇₂ 8
Figure S 9. GPC trace of PNIPAAm ₇₂ -PBNP ₇₃ (black) and PNIPAAm ₇₂ -PBNP ₂₆ (red)9
Figure S 10. GPC trace of PNIPAAm ₇₂ -PMNP ₇₈ (black) and PNIPAAm ₇₂ -PBNP ₂₉ (red)9
Figure S 11. GPC trace of PNIPAAm ₇₂ -PNP ₇₉ (black) and PNIPAAm ₇₂ -PNP ₂₉ (red)10
Figure S 12. The intensity ratio I_{337}/I_{334} obtained from pyrene excitation spectra of block
copolymer solutions vs block copolymer concentration. PNIPAAm_{72}-PNP_{79} ($^{\textcircled{O}}$),
PNIPAAm ₇₂ -PMNP ₇₈ (②), and PNIPAAm ₇₂ -PBNP ₇₃ (●)10
Figure S 13. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm ₇₂ -
PBNP ₂₆ (●), PNIPAAm ₇₂ -PMNP ₂₉ (○), and PNIPAAm ₇₂ -PNP ₂₉ (◆) micelles in water at 25
°C11
Figure S 14. Percentage transmittance versus temperature plot of $PNIPAAm_{72}$ - PNP_{79}
(blue circle, dash, forward scan, blue square, dash, reverse scan), $PNIPAAm_{72}$ -PMNP ₇₈
(red circle, dash, forward scan, red square dash, reverse scan), and $PNIPAAm_{72}$ -PBNP ₇₃
(black circle, solid, forward scan, black square, solid, reverse scan). (0.2 mg/mL, DI
Water)11
Figure S 15. Transmittance versus temperature plot of PNIPAAm ₇₂ -PBNP ₂₆ . Runs 1 (●), 2,
(②), and 3 (④). (0.2 mg/mL, DI Water)12
Figure S 16. Transmittance versus temperature plot of PNIPAAm ₇₂ -PBNP ₇₃ . Runs 1 (●), 2,
(②), and 3 (④). (0.2 mg/mL, DI Water)12
Figure S 17. Transmittance versus temperature plot of $PNIPAAm_{72}$ -PMNP ₂₉ . Runs 1 (\bullet),
2, (②), and 3 (④). (0.2 mg/mL, DI Water)13
Figure S 18. Transmittance versus temperature plot of PNIPAAm ₇₂ -PMNP ₇₈ . Runs 1 (\bullet),
2, (②), and 3 (④). (0.2 mg/mL, DI Water)13
Figure S 19. Transmittance versus temperature plot of PNIPAAm ₇₂ -PNP ₂₉ . Runs 1 (\bullet), 2,

Figure S 20. Transmittance versus temperature plot of PNIPAAm₇₂-PNP₇₃. Runs 1 (\bullet), 2, (⁽²⁾), and 3 (⁽¹⁾). (0.2 mg/mL, DI Water).14 Figure S 21. Hydrodynamic diameter ($D_{\rm h}$) distribution (Volume (%)) of PNIPAAm₇₂-Figure S 22. Hydrodynamic diameter ($D_{\rm h}$) distribution (Volume (%)) of PNIPAAm₇₂-PBNP₂₆ micelles at 25 °C (●), 35 °C (■), 40 °C (♦), and 50 °C (①). Run 2......15 Figure S 23. Hydrodynamic diameter ($D_{\rm h}$) distribution (Volume (%)) of PNIPAAm₇₂-PBNP₂₆ micelles at 25 °C (●), 35 °C (■), 40 °C (♦), and 50 °C (①). Run 3......16 Figure S 24. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-PMNP₂₉ micelles at 25 °C (●), 35 °C (■), 40 °C (♦), and 50 °C (①). Run 1......16 Figure S 25. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-PMNP₂₉ micelles at 25 °C (●), 35 °C (■), 40 °C (♦), and 50 °C (①). Run 2......17 Figure S 26. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-PMNP₂₉ micelles at 25 °C (●), 35 °C (■), 40 °C (♦), and 50 °C (①). Run 3......17 Figure S 28. Hydrodynamic diameter ($D_{\rm h}$) distribution (Volume (%)) of PNIPAAm₇₂-Figure S 29. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-Figure S 30. Hydrodynamic diameter (D_h) distribution (Number (%)) of PNIPAAm₇₂-PBNP₇₃ micelles at 25 °C (●), 35 °C (■), 40 °C (♦), and 50 °C (①)......19 Figure S 31. Hydrodynamic diameter ($D_{\rm h}$) distribution (Volume (%)) of PNIPAAm₇₂-PBNP₇₃ micelles at 25 °C (●), 35 °C (■), 40 °C (♦), and 50 °C (①). Run 1......20 Figure S 32. Hydrodynamic diameter ($D_{\rm h}$) distribution (Volume (%)) of PNIPAAm₇₂-PBNP₇₃ micelles at 25 °C (●), 35 °C (■), 40 °C (♦), and 50 °C (①). Run 2......20 Figure S 33. Hydrodynamic diameter ($D_{\rm h}$) distribution (Volume (%)) of PNIPAAm₇₂-Figure S 34. Hydrodynamic diameter ($D_{\rm h}$) distribution (Number (%)) of PNIPAAm₇₂-PMNP₇₈ micelles at 25 °C (●), 35 °C (■), 40 °C (♦), and 50 °C (①)......21 Figure S 35. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-Figure S 36. Hydrodynamic diameter ($D_{\rm h}$) distribution (Volume (%)) of PNIPAAm₇₂-PMNP₇₈ micelles at 25 °C (●), 35 °C (■), 40 °C (♦), and 50 °C (①). Run 2......22

Figure S 37. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm ₇₂ -
PMNP ₇₈ micelles at 25 °C (●), 35 °C (■), 40 °C (♦), and 50 °C (①). Run 323
Figure S 38. Hydrodynamic diameter (D_h) distribution (Number (%)) of PNIPAAm ₇₂ -
PNP ₇₉ micelles at 25 °C (●), 35 °C (■), 40 °C (♦), and 50 °C (①)23
Figure S 39. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm ₇₂ -
PNP ₇₉ micelles at 25 °C (●), 35 °C (■), 40 °C (♦), and 50 °C (①). Run 124
Figure S 40. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm ₇₂ -
PNP ₇₉ micelles at 25 °C (●), 35 °C (■), 40 °C (♦), and 50 °C (①). Run 224
Figure S 41. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm ₇₂ -
PNP ₇₉ micelles at 25 °C (●), 35 °C (■), 40 °C (♦), and 50 °C (①). Run 325
Figure S 42. DOX release from a) PNIPAAm ₇₂ -PNP ₇₉ at 37°C ($^{(1)}$) and 20°C ($^{(2)}$),
PNIPAAm ₇₂ -PMNP ₇₈ at 37°C (\blacklozenge) and 20°C (\boxdot), and PNIPAAm ₇₂ -PBNP ₇₃ 37°C (\bullet) and
20°C (O). Data points are plotted as a mean with standard deviation (n = 3)25
Table S1. LCST (°C) of block copolymers in deionized water. 26
Table S2. LCST (°C) of block copolymers in PBS solution
Table S3. $D_{\rm h}$ of micelles (Volume (%)) with PDI in parentheses26
Table S4. $D_{\rm h}$ of drug-loaded micelles (Volume (%)) with PDI in parentheses26

Figure S 1. ¹H NMR spectrum of (500 MHz, CDCl₃, 25 °C) of PNIPAAm-CTA.

Figure S 2. ¹H NMR spectrum of (500 MHz, CDCl₃, 25 °C) of PNIPAAm₇₂-PBNP₇₃.

Figure S 3. ¹H NMR spectrum of (500 MHz, CDCl₃, 25 °C) of PNIPAAm₇₂-PBNP₂₆.

Figure S 4. ¹H NMR spectrum of (500 MHz, CDCl₃, 25 °C) of PNIPAAm₇₂-PMNP₇₈.

Figure S 5. ¹H NMR spectrum of (500 MHz, CDCl₃, 25 °C) of PNIPAAm₇₂-PMNP₂₉.

Figure S 6. 1H NMR spectrum of (500 MHz, CDCl3, 25 °C) of PNIPAAm72-PNP79.

Figure S 7. ¹H NMR spectrum of (500 MHz, CDCl₃, 25 °C) of PNIPAAm₇₂-PNP₂₉.

Figure S 8. GPC trace of PNIPAAm₇₂.

Figure S 9. GPC trace of PNIPAAm₇₂-PBNP₇₃ (black) and PNIPAAm₇₂-PBNP₂₆ (red).

Figure S 10. GPC trace of PNIPAAm₇₂-PMNP₇₈ (black) and PNIPAAm₇₂-PBNP₂₉ (red).

Figure S 11. GPC trace of PNIPAAm₇₂-PNP₇₉ (black) and PNIPAAm₇₂-PNP₂₉ (red).

Figure S 12. The intensity ratio I_{337}/I_{334} obtained from pyrene excitation spectra of block copolymer solutions vs block copolymer concentration. PNIPAAm₇₂-PNP₇₉ (\oplus), PNIPAAm₇₂-PMNP₇₈ (\bigcirc), and PNIPAAm₇₂-PBNP₇₃ (\bullet).

Figure S 13. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-PBNP₂₆ (\bullet), PNIPAAm₇₂-PMNP₂₉ (\circ), and PNIPAAm₇₂-PNP₂₉ (\diamond) micelles in water at 25 °C.

Figure S 14. Percentage transmittance versus temperature plot of PNIPAAm₇₂-PNP₇₉ (blue circle, dash, forward scan, blue square, dash, reverse scan), PNIPAAm₇₂-PMNP₇₈ (red circle, dash, forward scan, red square dash, reverse scan), and PNIPAAm₇₂-PBNP₇₃ (black circle, solid, forward scan, black square, solid, reverse scan). (0.2 mg/mL, DI Water).

Figure S 15. Transmittance versus temperature plot of PNIPAAm₇₂-PBNP₂₆. Runs 1 (\bullet), 2, (\mathcal{O}), and 3 (\oplus). (0.2 mg/mL, DI Water).

Figure S 16. Transmittance versus temperature plot of PNIPAAm₇₂-PBNP₇₃. Runs 1 (\bullet), 2, (\oslash), and 3 (-). (0.2 mg/mL, DI Water).

Figure S 17. Transmittance versus temperature plot of PNIPAAm₇₂-PMNP₂₉. Runs 1 (\bullet), 2, (\mathcal{O}), and 3 (\oplus). (0.2 mg/mL, DI Water).

Figure S 18. Transmittance versus temperature plot of PNIPAAm₇₂-PMNP₇₈. Runs 1 (\bullet), 2, (\mathcal{O}), and 3 (\oplus). (0.2 mg/mL, DI Water).

Figure S 19. Transmittance versus temperature plot of PNIPAAm₇₂-PNP₂₉. Runs 1 (\bullet), 2, (2), and 3 (3). (0.2 mg/mL, DI Water).

Figure S 20. Transmittance versus temperature plot of PNIPAAm₇₂-PNP₇₃. Runs 1 (\bullet), 2, (2), and 3 (3). (0.2 mg/mL, DI Water).

Figure S 21. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-PBNP₂₆ micelles at 25 °C (\bullet), 35 °C (\bullet), 40 °C (\diamond), and 50 °C (\odot). Run 1.

Figure S 22. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-PBNP₂₆ micelles at 25 °C (\bullet), 35 °C (\bullet), 40 °C (\diamond), and 50 °C (\odot). Run 2.

Figure S 23. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-PBNP₂₆ micelles at 25 °C (\bullet), 35 °C (\bullet), 40 °C (\diamond), and 50 °C (\odot). Run 3.

Figure S 24. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-PMNP₂₉ micelles at 25 °C (\bullet), 35 °C (\blacksquare), 40 °C (\blacklozenge), and 50 °C (①). Run 1.

Figure S 25. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-PMNP₂₉ micelles at 25 °C (\bullet), 35 °C (\blacksquare), 40 °C (\blacklozenge), and 50 °C (①). Run 2.

Figure S 26. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-PMNP₂₉ micelles at 25 °C (\bullet), 35 °C (\blacksquare), 40 °C (\blacklozenge), and 50 °C (①). Run 3.

Figure S 27. Hydrodynamic diameter (Dh) distribution (Volume (%)) of PNIPAAm₇₂-PNP₂₉ micelles at 25 °C (\bullet), 35 °C (\blacksquare), 40 °C (\blacklozenge), and 50 °C (①). Run 1.

Figure S 28. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-PNP₂₉ micelles at 25 °C (\bullet), 35 °C (\blacksquare), 40 °C (\blacklozenge), and 50 °C (\bigcirc). Run 2.

Figure S 29. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-PNP₂₉ micelles at 25 °C (\bullet), 35 °C (\blacksquare), 40 °C (\blacklozenge), and 50 °C (①). Run 3.

Figure S 30. Hydrodynamic diameter (D_h) distribution (Number (%)) of PNIPAAm₇₂-PBNP₇₃ micelles at 25 °C (\bullet), 35 °C (\bullet), 40 °C (\diamond), and 50 °C (\odot).

Figure S 31. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-PBNP₇₃ micelles at 25 °C (\bullet), 35 °C (\bullet), 40 °C (\diamond), and 50 °C (\odot). Run 1.

Figure S 32. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-PBNP₇₃ micelles at 25 °C (\bullet), 35 °C (\bullet), 40 °C (\diamond), and 50 °C (\odot). Run 2.

Figure S 33. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-PBNP₇₃ micelles at 25 °C (\bullet), 35 °C (\bullet), 40 °C (\diamond), and 50 °C (\odot). Run 3.

Figure S 34. Hydrodynamic diameter (D_h) distribution (Number (%)) of PNIPAAm₇₂-PMNP₇₈ micelles at 25 °C (\bullet), 35 °C (\blacksquare), 40 °C (\blacklozenge), and 50 °C (\bigcirc).

Figure S 35. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-PMNP₇₈ micelles at 25 °C (\bullet), 35 °C (\blacksquare), 40 °C (\blacklozenge), and 50 °C (①). Run 1.

Figure S 36. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-PMNP₇₈ micelles at 25 °C (\bullet), 35 °C (\blacksquare), 40 °C (\blacklozenge), and 50 °C (①). Run 2.

Figure S 37. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-PMNP₇₈ micelles at 25 °C (\bullet), 35 °C (\blacksquare), 40 °C (\blacklozenge), and 50 °C (①). Run 3.

Figure S 38. Hydrodynamic diameter (D_h) distribution (Number (%)) of PNIPAAm₇₂-PNP₇₉ micelles at 25 °C (\bullet), 35 °C (\blacksquare), 40 °C (\blacklozenge), and 50 °C (\bigcirc).

Figure S 39. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-PNP₇₉ micelles at 25 °C (\bullet), 35 °C (\blacksquare), 40 °C (\blacklozenge), and 50 °C (①). Run 1.

Figure S 40. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-PNP₇₉ micelles at 25 °C (\bullet), 35 °C (\blacksquare), 40 °C (\blacklozenge), and 50 °C (①). Run 2.

Figure S 41. Hydrodynamic diameter (D_h) distribution (Volume (%)) of PNIPAAm₇₂-PNP₇₉ micelles at 25 °C (\bullet), 35 °C (\blacksquare), 40 °C (\blacklozenge), and 50 °C (①). Run 3.

Figure S 42. DOX release from a) PNIPAAm₇₂-PNP₇₉ at 37°C (0) and 20°C (2), PNIPAAm₇₂-PMNP₇₈ at 37°C (\blacklozenge) and 20°C (\boxdot), and PNIPAAm₇₂-PBNP₇₃ 37°C (\blacklozenge) and 20°C (0). Data points are plotted as a mean with standard deviation (n = 3).

Polymer	Run 1	Run 2	Run 3
PNIPAAm72-PBNP73	34.9	37.9	39.9
PNIPAAm72-PBNP26	41.9	40.9	40.9
PNIPAAm72-PMNP78	39.0	38.0	38.9
PNIPAAm72-PMNP29	37.9	37.0	39.9
PNIPAAm72-PNP79	32.0	34.1	32.2
PNIPAAm72-PNP29	32.9	32.9	31.9

Table S1. LCST (°C) of block copolymers in deionized water.

Table S2. LCST (°C) of block copolymers in PBS solution.

Polymer	Run 1	Run 2	Run 3	mean ± S.D.
PNIPAAm72-PBNP73	34.0	33.0	34.0	33.6 ± 0.6
PNIPAAm72-PBNP26	31.9	32.9	32.1	32.3 ± 0.5
PNIPAAm72-PMNP78	33.1	33.2	32.1	32.8 ± 0.6
PNIPAAm72-PMNP29	33.1	33.0	33.1	33.1 ± 0.0
PNIPAAm72-PNP79	25.0	28.1	26.3	26.5 ± 1.6
PNIPAAm72-PNP29	28.0	28.1	28.0	28.0 ± 0.0

Table S3. D_h of micelles (Volume (%)) with PDI in parentheses.

Polymer	Run 1	Run 2	Run 3	mean \pm S.D.
PNIPAAm72-PBNP73	101.5 (0.019)	101.5 (0.025)	98.9 (0.050)	100.6 ± 1.5
PNIPAAm72-PBNP26	55.7 (0.027)	55.3 (0.043)	56.7 (0.034)	55.9±0.7
PNIPAAm72-PMNP78	91.1 (0.041)	92.7 (0.002)	90.9 (0.038)	91.6±1.0
PNIPAAm72-PMNP29	80.7 (0.098)	78.4 (0.074)	79.9 (0.068)	79.7±1.2
PNIPAAm72-PNP29	131.3 (0.125)	138.2 (0.077)	138.2 (0.057)	135.9±4.0
PNIPAAm72-PNP79	90.4 (0.119)	73.2 (0.131)	85.8 (0.121)	83.1±8.9

Table S4. D_h of drug-loaded micelles (Volume (%)) with PDI in parentheses.

Polymer	Run 1	Run 2	Run 3	mean ± S.D.
PNIPAAm72-PBNP73	56.6 (0.253)	52.2 (0.256)	58.3 (0.252)	55.7±3.1
PNIPAAm72-PBNP26	36.0 (0.172)	37.4 (0.156)	35.9 (0.159)	36.5±0.8
PNIPAAm72-PMNP78	45.4 (0.240)	57.7 (0.236)	56.4 (0.265)	53.0±6.6
PNIPAAm72-PMNP29	55.0 (0.199)	47.5 (0.201)	65.4 (0.191)	55.9 ± 9.0
PNIPAAm72-PNP29	78.3 (0.243)	75.3 (0.226)	80.8 (0.108)	78.1 ±2.8
PNIPAAm72-PNP79	143.4 (0.141)	141.2 (0.135)	144.7 (0.145)	143.1±1.8