Supporting Information

Topography-dependent Antibacterial, Osteogenic and antiaging Properties of pure Titanium[†]

Qiaojie Luo, ^a Ying Huang, ^{a,b} Guangyu Zha, ^a Yadong Chen, ^a Xuliang Deng^b, Kai Zhang, ^a Weipu Zhu, ^c Shifang Zhao ^a and Xiaodong Li^{a,*}

1. Surface topography characterization

Analysis of surface topography was carried out using a field emission scanning electronic microscope (FESEM, SU-70, Hitachi, JP). Scanning electron micrographs were taken at different magnification in the secondary electron mode with a beam voltage of 20 keV after sputter coating with platinum.

Figure S1. Surface topography characterization of a series of nano-micro-hierarchical surfaces. As the secondary

acid-etching time increased, the nanostructure appeared and strengthened while the microstructure weakened.

^a The Affiliated Stomatology Hospital, College of Medicine, Zhejiang University, Hangzhou, P. R. China. Fax: +8657187217433; Tel: +8657188208378; E-mail address: <u>cisarli@zju.edu.cn</u>

^b Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, P.R. China

^e MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P.R. China

2. Surface roughness measurement

Surface roughness was recorded by a hand-held surface profiler (TR200, Beijing TIME group Inc, CN). Ten regions were randomly chosen and measured on the 3 cm-diameter Ti disc, and three samples were in each group. Results are present as average plus or minus standard deviation.

Figure S2. Surface roughness characterization. As the secondary acid-etching time increased, the surface roughness decreased.