## **Electronic Supplementary Information**

# Photoelectrochemical Detection of Tumor Marker Based on CdS Quantum Dots/ZnO Nanorods/Au@Pt-Paper Electrode 3D Origami Immunodevice

Shenguang Ge<sup>a,b</sup>, Weiping Li<sup>a</sup>, Mei Yan<sup>a</sup>, Xianrang Song<sup>c</sup> and Jinghua Yu<sup>\*a</sup>

<sup>a</sup>Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong,
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (P.
R. China)
<sup>b</sup>Shandong Provincial Key Laboratory of Preparation and Measurement of Building

Materials, School of Material Science and Engineering, University of Jinan, Jinan

250022 (P.R. China)

<sup>c</sup>Cancer Research Center, Shandong Tumor Hospital, Jinan 250117 (P.R. China)

**1. Design and Fabrication of 3D origami PEC device** \* Corresponding to: E-mail address: ujn.yujh@gmail.com Tel: +86-531-82767161 Fax: +86-531-82765956



Fig. S1A Wax-printed 3D PEC origami device on a paper sheet (A4) before baking.



Fig. S1B Wax-printed 3D PEC origami device on a paper sheet (A4) after baking.



**Fig. S1C** 3D PEC origami device on a paper sheet (A4) after screen-printing of Ag/AgCl auxiliary electrode and carbon counter electrode on one surface of paper.



**Fig. S1D** 3D PEC origami device on a paper sheet (A4) after screen-printing of carbon working electrodes on one surface of paper.



Figure S1E A photograph of the final device

#### 2. Optimization of experimental conditions



Fig. S2 Effect of incubation time (A), pH (B) and temperature (C) for 0.1 ng·mL<sup>-1</sup> CEA and AFP on PEC responses of  $\mu$ -OPECI, respectively, where n = 8 for each point.

### 3. Analytical performance



**Fig. S3** Logarithmic calibration curves for (A) CEA and (B) AFP (ten measurements for each point).

#### 4. Analytical performance

| A        | In the second | Linear range         | Detection limit      | Reference |  |
|----------|-----------------------------------------------------------------------------------------------------------------|----------------------|----------------------|-----------|--|
| Analytes | Immunoassay method                                                                                              | $(ng \cdot mL^{-1})$ | $(pg \cdot mL^{-1})$ |           |  |
| CEA      | Chemiluminescence                                                                                               | 1.0-70               | 650                  | 1         |  |
|          | Electrochemiluminescence                                                                                        | 1.0-100              | 500                  | 2         |  |
|          | Photoelectrochemical                                                                                            | 0.05-20              | 10                   | 3         |  |
|          | Photoelectrochemical                                                                                            | 0.001-100            | 0.1                  | 4         |  |
|          | Photoelectrochemical                                                                                            | 0.001-100            | 0.3                  | This work |  |
| AFP      | Electrochemiluminescence                                                                                        | 0.5-100              | 150                  | 2         |  |
|          | Electrochemical                                                                                                 | 0.01-200             | 1.0                  | 5         |  |
|          | Photoelectrochemical                                                                                            | 0.05-50              | 40                   | 6         |  |
|          | Photoelectrochemical                                                                                            | 0.001-100            | 0.5                  | This work |  |

Table S1 Comparison of analytical properties of different immunoassys toward CEA and AFP

#### 5. Application in analysis of serum samples

| Samples  | CEA concentration (ng·mL <sup>-1</sup> ) |                     | AFP concentration (ng·mL <sup>-1</sup> ) |                    |                     |                       |
|----------|------------------------------------------|---------------------|------------------------------------------|--------------------|---------------------|-----------------------|
|          | Proposed<br>method                       | Reference<br>method | Relative<br>error (%)                    | Proposed<br>method | Reference<br>method | Relative<br>error (%) |
| Sample-1 | 13.4                                     | 13.1                | 2.3                                      | 20.5               | 19.8                | 3.5                   |
| Sample-2 | 24.1                                     | 24.7                | -2.4                                     | 32.5               | 31.9                | 1.9                   |
| Sample-3 | 36.2                                     | 35.8                | 1.1                                      | 46.8               | 47.3                | -1.0                  |
| Sample-4 | 54.7                                     | 53.9                | 1.5                                      | 64.1               | 62.8                | 2.1                   |

Table S2 Assay results of human serum samples by the proposed and reference method

#### References

- 1 Z. F. Fu, Z. J. Yang, J. H. Tang, H. Liu, F. Yan, H. X. Ju, *Anal. Chem.*, 2007, **79**, 7376-7382.
- 2 L. Ge, J. X. Yan, X. R. Song, M.Yan, S. G. Ge, J. H. Yu, *Biomaterials*, 2012, **33**, 1024-1031.
- 3 W. W. Tu, W. J. Wang, J. P. Li, S. Y. Deng, H. X. Ju, *Chem. Commun.*, 2012, **48**, 6535-6537.
- 4 C.G. Hu, J. Zheng, X. Y. Su, J. Wang, W. Z Wu, S. S. Hu, *Anal. Chem.*, 2013, **85**, 10612–10619.
- 5 J. Tang, D. P. Tang, R. H. Niessner, G. N. Chen, D. M. Knopp, *Anal. Chem.*, 2010,
  83, 5407-5414.
- 6 G. L. Wang, J. J. Xu, H. Y. Chen, S. Z. Fu, Biosens. Bioelectron., 2009, 25, 791-796.