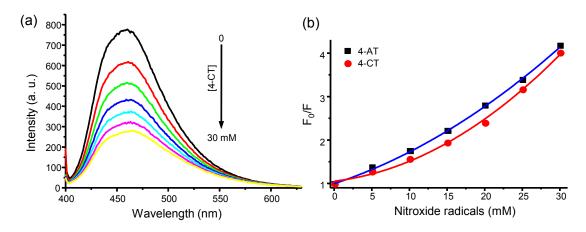
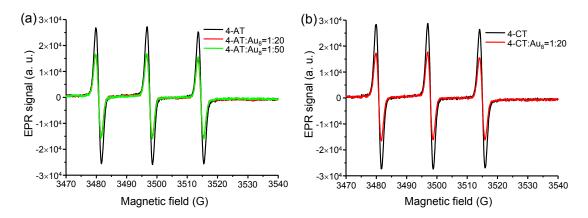
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2014

Supporting Information

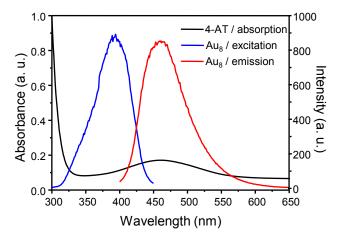

Interactions of Nitroxide Radicals with Dendrimerentrapped Au₈-clusters: A Fluorescent Nanosensor for Intracellular Imaging of Ascorbic Acid

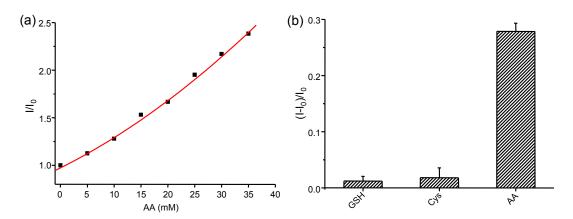
Ching-Ping Liu, Te-Haw Wu, Chia-Yeh Liu, and Shu-Yi Lin*

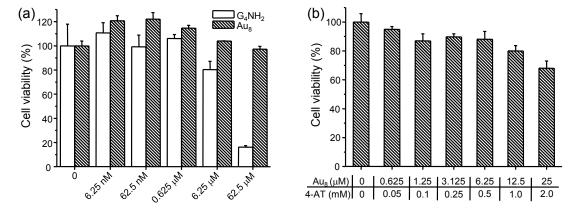

Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Taiwan

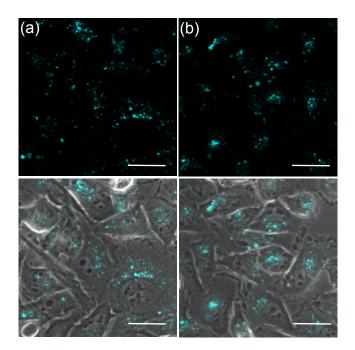
The detailed calculation of V (the static quenching constant) and $K_{\rm SV}$ (equal to $K_{\rm D}$, the dynamic quenching constant) in the modified Stern-Volmer eqn (1):

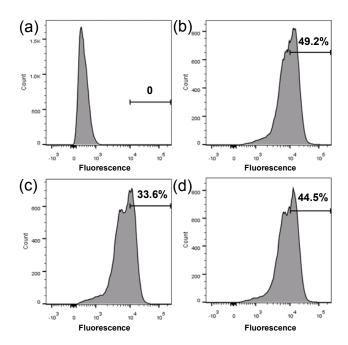
As shown in Fig. 1b, it is apparent that the ratio of F_0/F gives an upward curving plot. By treating the data according to the modified Stern-Volmer eqn. (1), plotting $F_0/F\exp(V[Q])$ vs. [Q] for varying V until a linear plot is obtained and then giving a V of 18 M^{-1} (equal to 0.018 mM^{-1}). After that, the linear plot of $F_0/F\exp(0.018[Q])$ against [Q] represents correction for static quenching of the steady-state fluorescence (red dots in Fig. 1b) and its slope was observed, giving a K_{SV} (= K_D) of 23 M^{-1} (equal to 0.023 mM^{-1}).


Fig. S1 (a) Changes in the fluorescence spectra of the Au_8 -cluster solution (0.25 mM) resulting from the addition of various concentrations of 4-CT (0-30 mM) were measured at an excitation wavelength of 390 nm. (b) Fluorescence quenching curves of the Au_8 -cluster yielded by the addition of various concentrations of 4-AT (blue line) and 4-CT (red line), respectively.


Fig. S2 EPR spectra of aqueous solutions prepared with (a) 4-AT and two molar ratios of 4-AT/Au₈-clusters (fixed [4-AT]=1.0 μ M); (b) 4-CT and the molar ratio of 4-CT/the Au₈-cluster as 1:20, respectively.


Fig. S3 EPR spectra of aqueous solutions prepared with 4-AT of 1.0 μ M as solution (1), solution (1) + [Au₈]=10⁻⁵ M, solution (1) + [EtNH₂]=10⁻³ M, and solution (1) + [EtNH₂]=10⁻² M, respectively.


Fig. S4 Comparison of the absorption spectrum for 4-AT and the excitation and emission spectra of the Au_8 -cluster in aqueous solutions.


Fig. S5 The fluorescence restoration curve of the mixture (Au₈-clusters + 4-AT) yielded by the addition of various concentrations of AA (0-35 mM). (b) Relative fluorescence intensities (I-I₀)/I₀ at emission of 460 nm from the mixture of Au₈-clusters and 4-AT after the addition of GSH, Cys, and AA, respectively.

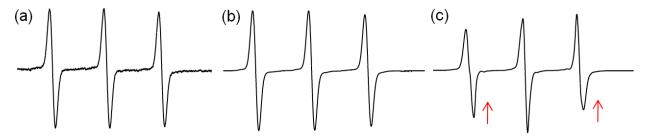

Fig. S6 Cell viability of (a) A549 cells incubated with dendrimers (G₄NH₂) and Au₈-clusters, respectively (referred to our previous work in ref. 14), and (b) MDA-MB-231 cells incubated with the mixture of Au₈-clusters and 4-AT (molar ratio 1:80) at different concentrations for 24 h.

Fig. S7 The confocal fluorescence images (upper panels) and their merged transmission images (lower panels) of MDA-MB-231 breast cancer cells treated with (a) Au₈-clusters (0.5 μ M) and (b) Au₈-clusters (0.5 μ M) mixing with AA (5.0 mM) for 16 h, respectively. The scale bars are 30 μ m.

Fig. S8 Flow cytometric analysis was used to calculate the percent of gated cells for (a) cells without treatment as control and (b) cells treated with Au_8 -clusters, (c) Au_8+4-AT and (d) $Au_8+4-AT+AA$, respectively.

Fig. S9 Comparison of EPR spectra for samples containing the following: (a) the aqueous solution of 4-AT, (b) the solution of 4-AT and Au_8 -clusters with O_2 purge for 10 min and the reaction then maintained for one week, and (c) the mixture of 4-AT and 4-OT (with a molar ratio of 1:0.2). Note that asymmetry is appeared, indicative of a mixture of nitroxide radicals including 4-AT and 4-OT.