Electronic Supporting Information

For

Adsorption and separation of amyloid beta aggregates using ferromagnetic nanoparticles coated with charged polymer brushes

Tong Bu^{*a,b*}, Tamotsu Zako^{*,*b*}, Martin Zeltner^{*c*}, Karin M. Sörgjerd^{*b*}, Christoph M. Schumacher ^{*c*}, Corinne J. Hofer^{*c*}, Wendelin J. Stark ^{*,*c*} and Mizuo Maeda ^{*,*a,b*}

E-mail: zako@riken.jp, mizuo@riken.jp and wendelin.stark@chem.ethz.ch

^{*a*} Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.

^b Bioengineering Laboratory, RIKEN Institute, Wako, Saitama 351-0198, Japan.

^c Institute for Chemical and Bioengineering, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland.

Figure S1 Size of oligomer determined by TEM. (a) TEM image of A β oligomer. The A β oligomer samples were dropped onto a carbon-coated TEM grid, and the grid was allowed to air-dry. Samarium acetate (2.5%) was used to stain the A β oligomer sample. Samples were observed at an excitation voltage of 80 kV using a JEM-1230 transmission electron microscope (JEOL, Tokyo, Japan). (b) The histogram demonstrates the size distribution of A β oligomers. Size of oligomers was determined by ImageJ software. The average size of oligomers is about 70 nm (67 ±17 nm).

Figure S2 a) The interaction between $A\beta_{1-40}$ fibrils and C/Co@polyMAPTAC was confirmed by scanning transmission electron microscopy (STEM). $A\beta_{1-40}$ peptide (Bachem, Bubendorf, Switzerland) dissolved in DMSO (1 M) was diluted in PBS (25 µM) and incubated at 37°C for 20 hrs. STEM images of 12.5µM $A\beta_{1-40}$ fibrils and 50 µg/mL NP was taken with Nova NANOSEM 450 (left, FEI, Oregon, USA). The scale bar= 200 nm (Left). Red circles are areas used for energy dispersive X-ray spectroscopy (EDX) determination as described below. Results of dot blot assay (right, upper) and derived bar graphs (right, lower) for quantification of the adsorption of C/Co@polyMAPTAC to $A\beta_{1-40}$ fibrils, were also shown. b), The identification of cobalt in the STEM image was carried out via EDX. Three areas were chosen for the detection, where spot 1 represented NP area, spot 2 represented $A\beta_{1-40}$ fibrils area, and spot 3 was grid only area. The characteristic peak of cobalt in the EDX-spectra appeared only in spot 1, indicating that dark spots on the STEM image was C/Co@polyMAPTAC.

Figure S3 Affinity of C/Co@polyMAPTAC to A β fibrils and oligomers were estimated using the adsorption ratio (%) against various NP concentrations obtained from Fig.2b (fibrils) and Fig.3c (oligomers). The molar concentration of C/Co@polyMAPTAC was calculated assuming the nanoparticle mol/weight is 0.15 mmol/g, which was obtained by the element microanalysis (Zeltner, M. et al. *J. Mat. Chem.* (2012) 22, 12064-71).

The K_d (μM) values were fitted using the following equation;

Adsorption ratio(%)= $A_0*[NP]/(K_D+[NP])$

Then K_d values for fibrils and oligomers were calculated to be 0.87 μ M and 12 nM, respectively.

Figure S4 (a), The adsorption and separation of A β oligomers by C/Co@polySPM was confirmed by native PAGE/Western blot method. For the analysis, A β oligomer (12.5 μ M) was incubated with C/Co@polySPM (0, 50, 100, 200 μ g/mL) for 1 h. The supernatant after magnetic separation was subjected to the native PAGE/Western blot analysis. (b), The adsorption of oligomers onto NPs was quantified using the relative intensity of oligomers on the membrane. The intensities of the samples without C/Co@polySPM were normalized to 100%.