Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2015

Supporting information

Self-polymerization of Dopamine and Polyethyleneimine: Novel Fluorescent Organic Nanoprobes for Biological Imaging Applications
Meiying Liu^a, Jinzhao Ji^b, Xiaoyong Zhang^{a, b,*}, Xiqi Zhang^b, Bin Yang^b, Fengjie Deng^a, Zhen Li^b, Ke Wang^b, Yang Yang^b, Yen Wei^{b,*}
^a Department of Chemistry/Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. ^b Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R.

China.

Xiaoyong zhang

Email: xiaoyongzhang1980@gmail.com;

Yen Wei

Email: weiyen@tsinghua.edu.cn

Results

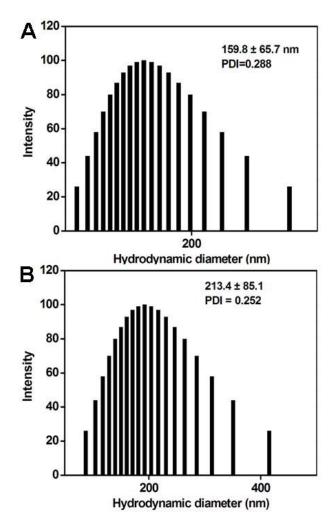
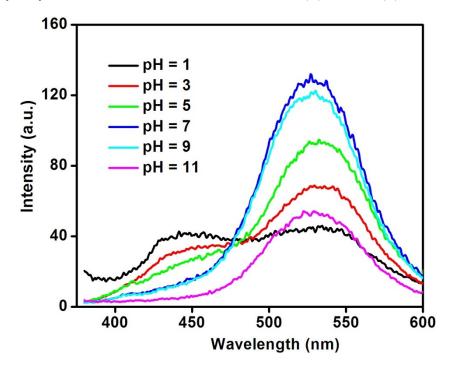



Fig. S1 Hydrodynamic size distribution of PEI-PDA FONs in (A) H2O and (B) PBS.

Fig. S2 Effect of pH values on the fluorescent properties of **PEI-PDA** FONs. The excitation wavelength is fixed at 360 nm.

Fig. S3 Optical images of **PEI-PDA** FONs water dispersion for more than one week (left bottle). The right bottle is the optical images of **PEI-PDA** FONs in water under UV lamp ($\lambda = 365$ nm).

Fig. S4 Cell viability of PEI-PDA FONs with A549 cells (the concentrations of PEI-PDA FONs are ranged from 10-120 μ g mL⁻¹) for 48 and 72 h.