Coumarin-Benzothiazole-Chlorambucil (Cou-Benz-Cbl) Conjugate:

ESIPT Based pH Sensitive Drug Delivery System

ShrabaniBarman,^aSourav K.Mukhopadhyay,^bMoumita Gangopadhyaya,^aSandipan Biswas,

^aSatyahari Dey, *^b and N. D. Pradeep Singh *^a

[a] Prof. N. D. Pradeep Singh, Shrabani Barman, Moumita Gangopadhyaya, Sandipan Biswas Department of Chemistry, Indian Institute of Technology
Kharagpur 721302, West Bengal, India
E-mail: ndpradeep@chem.iitkgp.ernet.in
[b]Prof.Satyahari Dey, Sourav K.Mukhopadhyay
Department of Biotechnology, Indian Institute of Technology
Kharagpur 721302, West Bengal, India

No.	Contents	Page No.
1.	General experimental procedure	2
2.	Characterization of compounds 3, C ₄ and C ₅ (Figure S1- S9)	2-7
3.	The naked eye color of the solution of C ₅ in different solvents (Figure S10)	7
4.	The naked eye color of the solution of C_5 in different solvents under fluorescent lamp (Figure S11).	8
5.	Fluorescence quantum yield calculation of C_4 , C_5 and 4- methyl-7-hydroxycoumarin (Table 1)	8
6.	Fluorescence Lifetime calculation of C ₅ and C ₄ in different solvents ($\lambda_{max} = 516$ nm and $\lambda_{max} = 406$ nm) (Table S2-S5)	9
8.	Time-resolved decay curves of C ₅ and C ₄ in different solvents ($\lambda_{max} = 516$ nm and $\lambda_{max} = 406$ nm) (Figure S12-S15)	10-11

9.	Photochemical Quantum yield calculation of C ₅ (Table	12
	S6)	

1. Experimental

1.1. Materials and method:

All reagents were purchased from Sigma Aldrich and used without further purification. Acetonitrile and dichloromethane were distilled from CaH₂ before use. ¹H NMR spectra were recorded on a BRUKER-AC 200 MHz spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (deuterochloroform: 7.26 ppm). Data are reported as follows: chemical shifts, multiplicity (s = singlet, d = doublet, t = doublettriplet, m = multiplet), coupling constant (Hz). 13 C NMR (50 MHz) spectra were recorded on a BRUKER-AC 200 MHz Spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (deuterochloroform: 77.0 ppm). UV/vis absorption spectra were recorded on a Shimadzu UV-2450 UV/vis spectrophotometer, fluorescence emission spectra were recorded on a Hitachi F-7000 fluorescence spectrophotometer, FT-IR spectra were recorded on a Perkin Elmer RXI spectrometer and HRMS spectra were recorded on a JEOL-AccuTOF JMS-T100L mass spectrometer. Photolysis of the ester conjugates were carried out using 125 W medium pressure Hg lamp supplied by SAIC (India). Chromatographic purification was done with 60-120 mesh silica gel (Merck). For reaction monitoring, precoated silica gel 60 F254 TLC sheets (Merck) were used. RP-HPLC was taken using mobile phase acetonitrile, at a flow rate of 1mL / min (detection: UV 254 nm).

2. Characterization of compound 3, C₄ and C₅:

Figure S1: ¹H NMR of 8-formyl-7-hydroxyl-4-(hydroxymethyl)coumarin (3).

Figure S2: ¹³ C NMR of8-formyl-7-hydroxyl-4-(hydroxymethyl)coumarin(3).

Figure S3: HRMS of 8-formyl-7-hydroxyl-4-(hydroxymethyl)coumarin(3).

Figure S4: ¹H NMR of8-benzothiazoyl-7-hydroxyl-4-(hydroxymethyl)coumarin (Cou-Benz-OH) (C₄).

Figure S5: ¹³ C NMR of8-benzothiazoyl-7-hydroxyl-4-(hydroxymethyl)coumarin (Cou-Benz-OH) (C₄).

IT KGP Chemistry 0164 22 (0 100-	454) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.	00); Cm (1:23)			1: TOF MS ES+ 7.14e5
-					
-					
%					
	327.0539				
286.0780 301.1433	328.0534 392.2319 413.2693 414.	2762 466.1222	507.2756 523.2491	577.1368 607.3896 647.4	501 663.4570
260 280 300 32	0 340 360 380 400 420	440 460 480	500 520 540 56	0 580 600 620 6	40 660

Figure S6: HRMS of 8-benzothiazoyl-7-hydroxyl-4-(hydroxymethyl)coumarin (Cou-Benz-OH) (C₄).

Figure S7: ¹H NMR ofCoumarin-Benzothiazoyl-Chlorambucil conjugate (Cou-Benz-Cbl) (C₅)

FigureS8: ¹³ C NMR ofCoumarin-Benzothiazoyl-Chlorambucil conjugate (Cou-Benz-Cbl (C₅).

Figure S9: HRMSof Coumarin-Benzothiazoyl-Chlorambucilconjugate (Cou-Benz-Cbl) (C₅).

Figure S10: The naked eye colour of the solution of C_5 in different solvents.

Figure S11: The naked eye colour of the solution of C_5 in different solvents under fluorescent lamp.

3. Fluorescence quantum yield calculation:

Table S1 : Quantum yield of C4, C5 and 4-methy-7-hydroxycoumarin $^{\rm 1}$

Compounds	Quantum yields ^a (Φ_f)
C ₄	19.53%
C ₅	24.27%
4-methy-7-hydroxycoumarin	0.0617%

^a measurements were performed in absolute ethanol solvent. Fluorescence quantum yields were measured with quinine sulfate (Φ_f = 0.546% in ethanol) as the reference.

Determination of $\Phi_{\rm f}$

 $(\Phi_{f})_{C} = (\Phi_{f})_{r} * (Grad_{C}) * \eta^{2}_{C} / (Grad_{r}) * \eta^{2}_{r}$ c stands for Compound under measurement r for reference

4. Lifetime calculation:

Solvent	$\tau_{1}(a_{1})$ (ns)	$\tau_{2}(a_{2})$ (ns)	$<\tau>^{a}$
Benzene	1.62 (0.16)	3.52 (0.84)	3.21
Methanol	1.17 (0.14)	3.35 (0.86)	3.04
THF	1.28 (0.81)	2.05 (0.19)	1.28

Table S2: Fluorescence lifetime of $C_5 (\lambda_{max} = 516 \text{ nm})$

Table S3: Fluorescence lifetime of $C_5 (\lambda_{max} = 406 \text{ nm})$

Solvent	$\tau_{1}(a_{1})$ (ns)	$\tau_{2}(a_{2})$ (ns)	$<\tau>^{a}$
Methanol	1.03 (0.86)	7.59 (0.14)	1.94
THF	0.81 (0.87)	1.78 (0.13)	0.94

Table S4: Fluorescence lifetime of $C_4 (\lambda_{max} = 516 \text{ nm})$

Solvent	$\tau_{1}(a_{1})$ (ns)	$\tau_2(a_2)$ (ns)	$<\tau > a$
Benzene	1.5 (0.04)	3.07 (0.96)	3.21
Methanol	0.87 (0.46)	3.12 (0.54)	2.08
THF	1.00 (1.20)	0	1.20

Table S5: Fluorescence lifetime of $C_4 (\lambda_{max} = 406 \text{ nm})$

Solvent	$\tau_{1}(a_{1})(ns)$	$\tau_{2}(a_{2})(ns)$	$<\tau > a$
Methanol	1.31 (0.72)	7.24 (0.28)	2.97
THF	0.75 (0.73)	2.75 (0.27)	1.29

 τ = lifetime, a = component, $\langle \tau \rangle^a$ = average lifetime Error in experimental data of $\pm 5\%$

Figure S12: Time-resolved decay curves of C₅ (emission $\lambda_{max} = 516$ nm).

Figure S13: Time-resolved decay curves of C₅ (emission $\lambda_{max} = 406$ nm).

Figure S14: Time-resolved decay curves of C_4 (emission $\lambda_{max} = 516$ nm).

Figure S15: Time-resolved decay curves of C_4 (emission $\lambda_{max} = 406$ nm).

5. Photochemical Quantum yield calculation:

Compound name	Rate constant k_p^{a}	Photochemical Quantum yield ϕ_p^{b}
C ₅	1.15 X 10 ⁻³ . min ⁻¹	0.006

Table S6: Rate constant and Photochemical Quantum Yield calculation of C_5

Determination of ϕ_p

$$(\phi_{p})_{c} = (\phi_{p})_{act} * (k_{p})_{c} * (F_{act})/ (k_{p})_{act} * (F_{c})$$

^a Rate constant under photolytic condition; ^b Photochemical quantum yield (error limit \pm 5%); _C stands for compund (C₅); 'act' stands for actinometer; F is the fraction of light absorbed; Potassium ferrioxalate was used as an actinometer; k_p is the photolysis rate constant and ϕ_p is the photocemical quantum yield

References:

1. L. Xie, Y. Chen, W. Wu, H. Guo, J. Zhao and X. Yu, *Dyes and Pigments*, 2012, **92**, 1361-1369.