Supplemental Material Low Operation Voltages Macromolecular Composite Memory Assisted by Graphene Nanoflakes

Ying-Chih Lai^a, Di-Yan Wang^b, I-Sheng Huang^b, Yu-Ting Chen^c, Yung-Hsuan Hsu^d, Tai-Yuan Lin^e, Hsin-Fei Meng^d, Ting-Chang Chang^c, Ying-Jay Yang^{a,f}, Chia-Chun Chen^{b,g}, Fang-Chi Hsu^h, and Yang-Fang Chenⁱ*

^a Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 106, Taiwan

^b Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan

^c Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan

^{d I}nstitute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan

^e Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan

^f Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106, Taiwan

^{*g}</sup>Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan* ^{*h*}Department of Materials Science and Engineering, National United University, Miaoli 360, Taiwan</sup>

ⁱ Department of Physics, National Taiwan University, Taipei 106, Taiwan E-mail: yfchen@phys.ntu.edu.tw

<u>Electrical properties of memory device fabricated with different GNFs</u> <u>concentrations</u>:

Figs. S1(a) and (b) show the electrical properties of ITO/GNFs-PVA/Ag devices containing 11.8% and 10.3% GNFs, respectively. There are no apparent rewritable characteristics for those devices, instead they exhibit a write-once-read-many-times type memory effects.^{s1}

Fig. S1 Electrical properties of ITO/GNFs-PVA/Ag devices containing (a) 11.8% and (b) 10.3% GNFs.

References

S1. J. Liu, Z. Yin, X. Cao, F. Zhao, A. Lin, L. Xie, Q. Fan, F. Boey, H. Zhang, W. Huang, *ACS Nano* 2010, **4**, 3987-3992.