## **Supporting Information for:**

## Thiol-Containing Polymeric Embedding Materials for Nanoskiving

Robin L. Mays<sup>‡</sup>, Parisa Pourhossein<sup>†</sup>, Dhanalekshmi Savithri<sup>‡</sup>, Jan Genzer<sup>‡</sup>, Ryan C.Chiechi<sup>\*†</sup>, and Michael D. Dickey<sup>\*‡</sup>

Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA<sup>‡</sup>

Stratingh Institute for Chemstry and Zernike Institute for Advanced Materials, University of

Groningen, Nijenborgh 4, Groningen, 9747AG, the Netherlands $^{\dagger}$ 



**Figure S1.** Photographs of the blocks of the different embedding resins being trimmed with a razor blade prior to sectioning. The photographs marked with a red X indicate blocks that could not be trimmed because the polymers were too soft, causing the block to deform, and/or the stress induced by the razor blade caused macroscopic adhesive failure–i.e., the block fell apart. The photographs marked with a green check indicate blocks that could be trimmed, but not necessarily sectioned. Three different blocks of thiol/Epofix are pictured, highlighting the block-to-block variability; one block (bottom-left) was too soft to be trimmed, one (bottom-center) could be trimmed (but was not sectioned), and one (bottom-right) was too flexible to be mounted for trimming.



**Figure S2:** Variations in stress-strain behavior for 1:1 PETMP/TATATO. The colors indicate tensile test samples that were made from the same starting batch of material. Variability is seen both within batches and between batches.