# Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C # This journal is © The Royal Society of Chemistry 2012 data_global _journal_name_full 'Energy Environ.Sci.' _journal_coden_cambridge 1148 _journal_year ? _journal_volume ? _journal_page_first ? _publ_author_name D.Keszler _publ_contact_author_name D.Keszler _publ_contact_author_email douglas.keszler@oregonstate.edu data_dkr55a _database_code_depnum_ccdc_archive 'CCDC 893469' #TrackingRef '- Cu3PS0.71Se3.29.cif' _audit_creation_method SHELXLTL _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'Cu3 P S0.71 Se3.29' _chemical_formula_weight 504.16 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source P P 0.1023 0.0942 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cu Cu 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' S S 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Se Se -0.0929 2.2259 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Orthorhombic _symmetry_space_group_name_H-M Pmn2(1) loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' 'x+1/2, -y, z+1/2' '-x, y, z' _cell_length_a 7.6164(6) _cell_length_b 6.5945(6) _cell_length_c 6.3107(5) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 316.96(5) _cell_formula_units_Z 2 _cell_measurement_temperature 293(2) _cell_measurement_reflns_used 998 _cell_measurement_theta_min 5.35 _cell_measurement_theta_max 26.98 _exptl_crystal_description needle _exptl_crystal_colour black _exptl_crystal_size_max 0.35 _exptl_crystal_size_mid 0.02 _exptl_crystal_size_min 0.02 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 5.282 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 450 _exptl_absorpt_coefficient_mu 29.20 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.0462 _exptl_absorpt_correction_T_max 0.6584 _exptl_absorpt_process_details SADABS _exptl_special_details ; ? ; _diffrn_ambient_temperature 293(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker Apex CCD area detector' _diffrn_measurement_method 'phi and omega scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 3387 _diffrn_reflns_av_R_equivalents 0.0267 _diffrn_reflns_av_sigmaI/netI 0.0254 _diffrn_reflns_limit_h_min -9 _diffrn_reflns_limit_h_max 9 _diffrn_reflns_limit_k_min -8 _diffrn_reflns_limit_k_max 8 _diffrn_reflns_limit_l_min -8 _diffrn_reflns_limit_l_max 8 _diffrn_reflns_theta_min 3.09 _diffrn_reflns_theta_max 26.98 _reflns_number_total 743 _reflns_number_gt 723 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'Bruker SMART' _computing_cell_refinement 'Bruker SAINT' _computing_data_reduction 'Bruker SAINT' _computing_structure_solution 'Bruker SHELXTL' _computing_structure_refinement 'Bruker SHELXTL' _computing_molecular_graphics 'Bruker SHELXTL' _computing_publication_material 'Bruker SHELXTL' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0457P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens ? _refine_ls_hydrogen_treatment ? _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.0097(8) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.14(3) _refine_ls_number_reflns 743 _refine_ls_number_parameters 50 _refine_ls_number_restraints 3 _refine_ls_R_factor_all 0.0294 _refine_ls_R_factor_gt 0.0283 _refine_ls_wR_factor_ref 0.0678 _refine_ls_wR_factor_gt 0.0660 _refine_ls_goodness_of_fit_ref 1.000 _refine_ls_restrained_S_all 0.998 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cu1 Cu 0.0000 0.64476(18) 0.0984(2) 0.0250(3) Uani 1 2 d S . . Cu2 Cu 0.74531(8) 0.18221(12) 0.08903(13) 0.0244(3) Uani 1 1 d . . . P1 P 0.0000 0.3254(3) 0.5979(4) 0.0089(4) Uani 1 2 d S . . Se1 Se 0.0000 0.31613(16) 0.24810(16) 0.0131(4) Uani 0.716(9) 2 d SP . . S1 S 0.0000 0.31613(16) 0.24810(16) 0.0131(4) Uani 0.284(9) 2 d SP . . Se2 Se 0.0000 0.63708(15) 0.72049(16) 0.0129(3) Uani 0.749(9) 2 d SP . . S2 S 0.0000 0.63708(15) 0.72049(16) 0.0129(3) Uani 0.251(9) 2 d SP . . Se3 Se 0.73914(6) 0.83499(9) 0.21258(9) 0.0132(3) Uani 0.912(9) 1 d P . . S3 S 0.73914(6) 0.83499(9) 0.21258(9) 0.0132(3) Uani 0.088(9) 1 d P . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cu1 0.0284(6) 0.0249(6) 0.0217(7) 0.0032(6) 0.000 0.000 Cu2 0.0277(5) 0.0256(5) 0.0198(7) -0.0014(4) -0.0004(3) -0.0013(3) P1 0.0104(9) 0.0107(10) 0.0056(10) 0.0008(8) 0.000 0.000 Se1 0.0133(5) 0.0166(5) 0.0093(8) 0.0000(4) 0.000 0.000 S1 0.0133(5) 0.0166(5) 0.0093(8) 0.0000(4) 0.000 0.000 Se2 0.0147(5) 0.0115(5) 0.0126(6) -0.0005(5) 0.000 0.000 S2 0.0147(5) 0.0115(5) 0.0126(6) -0.0005(5) 0.000 0.000 Se3 0.0122(3) 0.0133(3) 0.0140(5) -0.0003(3) -0.0010(3) -0.00188(19) S3 0.0122(3) 0.0133(3) 0.0140(5) -0.0003(3) -0.0010(3) -0.00188(19) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cu1 Se1 2.3641(17) . ? Cu1 S2 2.3855(14) 1_554 ? Cu1 Se2 2.3855(14) 1_554 ? Cu1 S3 2.4577(10) 4_655 ? Cu1 Se3 2.4577(10) 4_655 ? Cu1 Se3 2.4577(10) 1_455 ? Cu1 S3 2.4577(10) 1_455 ? Cu2 S1 2.3560(9) 1_655 ? Cu2 Se1 2.3560(9) 1_655 ? Cu2 S2 2.3663(9) 2_564 ? Cu2 Se2 2.3663(9) 2_564 ? Cu2 S3 2.3813(10) 2_664 ? Cu2 Se3 2.3813(10) 2_664 ? Cu2 Se3 2.4193(11) 1_545 ? Cu2 S3 2.4193(11) 1_545 ? P1 Se1 2.208(3) . ? P1 Se2 2.196(2) . ? P1 S3 2.2272(15) 2_565 ? P1 Se3 2.2272(15) 2_565 ? P1 S3 2.2272(15) 3_465 ? P1 Se3 2.2272(15) 3_465 ? Se1 Cu2 2.3560(9) 1_455 ? Se1 Cu2 2.3560(9) 4_655 ? Se2 Cu2 2.3663(9) 3_465 ? Se2 Cu2 2.3663(9) 2_565 ? Se2 Cu1 2.3855(14) 1_556 ? Se3 P1 2.2272(15) 2_564 ? Se3 Cu2 2.3813(10) 2_665 ? Se3 Cu2 2.4193(11) 1_565 ? Se3 Cu1 2.4577(10) 1_655 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Se1 Cu1 S2 112.34(6) . 1_554 ? Se1 Cu1 Se2 112.34(6) . 1_554 ? S2 Cu1 Se2 0.000(1) 1_554 1_554 ? Se1 Cu1 S3 110.53(4) . 4_655 ? S2 Cu1 S3 107.70(4) 1_554 4_655 ? Se2 Cu1 S3 107.70(4) 1_554 4_655 ? Se1 Cu1 Se3 110.53(4) . 4_655 ? S2 Cu1 Se3 107.70(4) 1_554 4_655 ? Se2 Cu1 Se3 107.70(4) 1_554 4_655 ? S3 Cu1 Se3 0.00(3) 4_655 4_655 ? Se1 Cu1 Se3 110.53(4) . 1_455 ? S2 Cu1 Se3 107.70(4) 1_554 1_455 ? Se2 Cu1 Se3 107.70(4) 1_554 1_455 ? S3 Cu1 Se3 107.88(6) 4_655 1_455 ? Se3 Cu1 Se3 107.88(6) 4_655 1_455 ? Se1 Cu1 S3 110.53(4) . 1_455 ? S2 Cu1 S3 107.70(4) 1_554 1_455 ? Se2 Cu1 S3 107.70(4) 1_554 1_455 ? S3 Cu1 S3 107.88(6) 4_655 1_455 ? Se3 Cu1 S3 107.88(6) 4_655 1_455 ? Se3 Cu1 S3 0.000(14) 1_455 1_455 ? S1 Cu2 Se1 0.00(6) 1_655 1_655 ? S1 Cu2 S2 108.18(4) 1_655 2_564 ? Se1 Cu2 S2 108.18(4) 1_655 2_564 ? S1 Cu2 Se2 108.18(4) 1_655 2_564 ? Se1 Cu2 Se2 108.18(4) 1_655 2_564 ? S2 Cu2 Se2 0.0 2_564 2_564 ? S1 Cu2 S3 113.70(4) 1_655 2_664 ? Se1 Cu2 S3 113.70(4) 1_655 2_664 ? S2 Cu2 S3 114.39(5) 2_564 2_664 ? Se2 Cu2 S3 114.39(5) 2_564 2_664 ? S1 Cu2 Se3 113.70(4) 1_655 2_664 ? Se1 Cu2 Se3 113.70(4) 1_655 2_664 ? S2 Cu2 Se3 114.39(5) 2_564 2_664 ? Se2 Cu2 Se3 114.39(5) 2_564 2_664 ? S3 Cu2 Se3 0.00(3) 2_664 2_664 ? S1 Cu2 Se3 103.50(4) 1_655 1_545 ? Se1 Cu2 Se3 103.50(4) 1_655 1_545 ? S2 Cu2 Se3 110.38(4) 2_564 1_545 ? Se2 Cu2 Se3 110.38(4) 2_564 1_545 ? S3 Cu2 Se3 106.11(3) 2_664 1_545 ? Se3 Cu2 Se3 106.11(3) 2_664 1_545 ? S1 Cu2 S3 103.50(4) 1_655 1_545 ? Se1 Cu2 S3 103.50(4) 1_655 1_545 ? S2 Cu2 S3 110.38(4) 2_564 1_545 ? Se2 Cu2 S3 110.38(4) 2_564 1_545 ? S3 Cu2 S3 106.11(3) 2_664 1_545 ? Se3 Cu2 S3 106.11(3) 2_664 1_545 ? Se3 Cu2 S3 0.00(2) 1_545 1_545 ? Se1 P1 Se2 112.22(10) . . ? Se1 P1 S3 108.17(8) . 2_565 ? Se2 P1 S3 109.27(9) . 2_565 ? Se1 P1 Se3 108.17(8) . 2_565 ? Se2 P1 Se3 109.27(9) . 2_565 ? S3 P1 Se3 0.00(3) 2_565 2_565 ? Se1 P1 S3 108.17(8) . 3_465 ? Se2 P1 S3 109.27(9) . 3_465 ? S3 P1 S3 109.73(10) 2_565 3_465 ? Se3 P1 S3 109.73(10) 2_565 3_465 ? Se1 P1 Se3 108.17(8) . 3_465 ? Se2 P1 Se3 109.27(9) . 3_465 ? S3 P1 Se3 109.73(10) 2_565 3_465 ? Se3 P1 Se3 109.73(10) 2_565 3_465 ? S3 P1 Se3 0.00(4) 3_465 3_465 ? P1 Se1 Cu2 115.87(4) . 1_455 ? P1 Se1 Cu2 115.87(4) . 4_655 ? Cu2 Se1 Cu2 110.85(5) 1_455 4_655 ? P1 Se1 Cu1 111.97(7) . . ? Cu2 Se1 Cu1 99.98(5) 1_455 . ? Cu2 Se1 Cu1 99.98(5) 4_655 . ? P1 Se2 Cu2 110.35(5) . 3_465 ? P1 Se2 Cu2 110.35(5) . 2_565 ? Cu2 Se2 Cu2 104.30(5) 3_465 2_565 ? P1 Se2 Cu1 111.85(9) . 1_556 ? Cu2 Se2 Cu1 109.87(4) 3_465 1_556 ? Cu2 Se2 Cu1 109.87(4) 2_565 1_556 ? P1 Se3 Cu2 110.02(8) 2_564 2_665 ? P1 Se3 Cu2 111.14(7) 2_564 1_565 ? Cu2 Se3 Cu2 111.45(3) 2_665 1_565 ? P1 Se3 Cu1 108.87(6) 2_564 1_655 ? Cu2 Se3 Cu1 103.18(4) 2_665 1_655 ? Cu2 Se3 Cu1 111.89(4) 1_565 1_655 ? _diffrn_measured_fraction_theta_max 0.998 _diffrn_reflns_theta_full 26.98 _diffrn_measured_fraction_theta_full 0.998 _refine_diff_density_max 1.105 _refine_diff_density_min -0.904 _refine_diff_density_rms 0.343 # Attachment '- Cu3PS1.89S2.11.cif' data_dk54o _database_code_depnum_ccdc_archive 'CCDC 893470' #TrackingRef '- Cu3PS1.89S2.11.cif' _audit_creation_method SHELXLTL _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'Cu3 P S1.89 Se2.11' _chemical_formula_weight 448.82 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source P P 0.1023 0.0942 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cu Cu 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' S S 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Se Se -0.0929 2.2259 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Orthorhombic _symmetry_space_group_name_H-M Pmn2(1) _symmetry_space_group_name_Hall 'P 2ac -2' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' 'x+1/2, -y, z+1/2' '-x, y, z' _cell_length_a 7.5034(5) _cell_length_b 6.4951(5) _cell_length_c 6.2174(4) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 303.01(4) _cell_formula_units_Z 2 _cell_measurement_temperature 293(2) _cell_measurement_reflns_used 986 _cell_measurement_theta_min 4.26 _cell_measurement_theta_max 26.99 _exptl_crystal_description needle _exptl_crystal_colour black _exptl_crystal_size_max 0.35 _exptl_crystal_size_mid 0.02 _exptl_crystal_size_min 0.02 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 4.919 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 408 _exptl_absorpt_coefficient_mu 23.88 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.0438 _exptl_absorpt_correction_T_max 0.6470 _exptl_absorpt_process_details SADABS _exptl_special_details ; ? ; _diffrn_ambient_temperature 293(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker Apex CCD area detector' _diffrn_measurement_method 'phi and omega scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 3248 _diffrn_reflns_av_R_equivalents 0.0224 _diffrn_reflns_av_sigmaI/netI 0.0199 _diffrn_reflns_limit_h_min -9 _diffrn_reflns_limit_h_max 9 _diffrn_reflns_limit_k_min -8 _diffrn_reflns_limit_k_max 8 _diffrn_reflns_limit_l_min -7 _diffrn_reflns_limit_l_max 7 _diffrn_reflns_theta_min 3.14 _diffrn_reflns_theta_max 26.99 _reflns_number_total 710 _reflns_number_gt 691 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'Bruker SMART' _computing_cell_refinement 'Bruker SAINT' _computing_data_reduction 'Bruker SAINT' _computing_structure_solution 'Bruker SHELXTL' _computing_structure_refinement 'Bruker SHELXTL' _computing_molecular_graphics 'Bruker SHELXTL' _computing_publication_material 'Bruker SHELXTL' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0354P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens ? _refine_ls_hydrogen_treatment ? _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.0097(8) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.04(3) _refine_ls_number_reflns 710 _refine_ls_number_parameters 49 _refine_ls_number_restraints 3 _refine_ls_R_factor_all 0.0252 _refine_ls_R_factor_gt 0.0242 _refine_ls_wR_factor_ref 0.0582 _refine_ls_wR_factor_gt 0.0574 _refine_ls_goodness_of_fit_ref 1.048 _refine_ls_restrained_S_all 1.045 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cu1 Cu 0.0000 0.64272(14) 0.09559(16) 0.0261(3) Uani 1 2 d S . . Cu2 Cu 0.74613(7) 0.18335(10) 0.08961(9) 0.0255(3) Uani 1 1 d . . . P1 P 0.0000 0.3253(2) 0.5964(3) 0.0082(3) Uani 1 2 d S . . Se1 Se 0.0000 0.31622(17) 0.25027(17) 0.0130(4) Uani 0.359(7) 2 d SP . . S1 S 0.0000 0.31622(17) 0.25027(17) 0.0130(4) Uani 0.641(7) 2 d SP . . Se2 Se 0.0000 0.63552(16) 0.71842(19) 0.0131(3) Uani 0.425(7) 2 d SP . . S2 S 0.0000 0.63552(16) 0.71842(19) 0.0131(3) Uani 0.575(7) 2 d SP . . Se3 Se 0.73915(6) 0.83462(9) 0.21207(9) 0.0124(2) Uani 0.660(7) 1 d P . . S3 S 0.73915(6) 0.83462(9) 0.21207(9) 0.0124(2) Uani 0.340(7) 1 d P . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cu1 0.0292(5) 0.0254(5) 0.0236(6) 0.0022(5) 0.000 0.000 Cu2 0.0267(5) 0.0271(4) 0.0227(5) -0.0012(4) -0.0007(3) -0.0014(3) P1 0.0082(8) 0.0082(8) 0.0082(8) 0.0011(7) 0.000 0.000 Se1 0.0133(6) 0.0158(6) 0.0098(8) -0.0002(4) 0.000 0.000 S1 0.0133(6) 0.0158(6) 0.0098(8) -0.0002(4) 0.000 0.000 Se2 0.0150(5) 0.0116(5) 0.0127(6) -0.0007(5) 0.000 0.000 S2 0.0150(5) 0.0116(5) 0.0127(6) -0.0007(5) 0.000 0.000 Se3 0.0117(3) 0.0127(3) 0.0128(5) 0.0002(2) -0.0011(3) -0.00159(18) S3 0.0117(3) 0.0127(3) 0.0128(5) 0.0002(2) -0.0011(3) -0.00159(18) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cu1 Se1 2.3285(15) . ? Cu1 S2 2.3455(11) 1_554 ? Cu1 Se2 2.3455(11) 1_554 ? Cu1 S3 2.4308(8) 4_655 ? Cu1 Se3 2.4308(8) 4_655 ? Cu1 Se3 2.4308(8) 1_455 ? Cu1 S3 2.4308(8) 1_455 ? Cu2 S1 2.3176(8) 1_655 ? Cu2 Se1 2.3176(8) 1_655 ? Cu2 S2 2.3316(8) 2_564 ? Cu2 Se2 2.3316(8) 2_564 ? Cu2 S3 2.3528(7) 2_664 ? Cu2 Se3 2.3528(7) 2_664 ? Cu2 Se3 2.3901(9) 1_545 ? Cu2 S3 2.3901(9) 1_545 ? P1 Se1 2.153(2) . ? P1 Se2 2.153(2) . ? P1 S3 2.1946(12) 2_565 ? P1 Se3 2.1946(12) 2_565 ? P1 S3 2.1946(12) 3_465 ? P1 Se3 2.1946(12) 3_465 ? Se1 Cu2 2.3176(8) 1_455 ? Se1 Cu2 2.3176(8) 4_655 ? Se2 Cu2 2.3316(8) 3_465 ? Se2 Cu2 2.3316(8) 2_565 ? Se2 Cu1 2.3455(11) 1_556 ? Se3 P1 2.1946(12) 2_564 ? Se3 Cu2 2.3528(7) 2_665 ? Se3 Cu2 2.3901(10) 1_565 ? Se3 Cu1 2.4308(8) 1_655 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Se1 Cu1 S2 113.25(6) . 1_554 ? Se1 Cu1 Se2 113.25(6) . 1_554 ? S2 Cu1 Se2 0.00(5) 1_554 1_554 ? Se1 Cu1 S3 110.12(3) . 4_655 ? S2 Cu1 S3 107.94(4) 1_554 4_655 ? Se2 Cu1 S3 107.94(4) 1_554 4_655 ? Se1 Cu1 Se3 110.12(3) . 4_655 ? S2 Cu1 Se3 107.94(4) 1_554 4_655 ? Se2 Cu1 Se3 107.94(4) 1_554 4_655 ? S3 Cu1 Se3 0.00(3) 4_655 4_655 ? Se1 Cu1 Se3 110.12(3) . 1_455 ? S2 Cu1 Se3 107.94(4) 1_554 1_455 ? Se2 Cu1 Se3 107.94(4) 1_554 1_455 ? S3 Cu1 Se3 107.26(5) 4_655 1_455 ? Se3 Cu1 Se3 107.26(5) 4_655 1_455 ? Se1 Cu1 S3 110.12(3) . 1_455 ? S2 Cu1 S3 107.94(4) 1_554 1_455 ? Se2 Cu1 S3 107.94(4) 1_554 1_455 ? S3 Cu1 S3 107.26(5) 4_655 1_455 ? Se3 Cu1 S3 107.26(5) 4_655 1_455 ? Se3 Cu1 S3 0.000(13) 1_455 1_455 ? S1 Cu2 Se1 0.00(5) 1_655 1_655 ? S1 Cu2 S2 108.37(4) 1_655 2_564 ? Se1 Cu2 S2 108.37(4) 1_655 2_564 ? S1 Cu2 Se2 108.37(4) 1_655 2_564 ? Se1 Cu2 Se2 108.37(4) 1_655 2_564 ? S2 Cu2 Se2 0.0 2_564 2_564 ? S1 Cu2 S3 114.20(4) 1_655 2_664 ? Se1 Cu2 S3 114.20(4) 1_655 2_664 ? S2 Cu2 S3 113.88(4) 2_564 2_664 ? Se2 Cu2 S3 113.88(4) 2_564 2_664 ? S1 Cu2 Se3 114.20(4) 1_655 2_664 ? Se1 Cu2 Se3 114.20(4) 1_655 2_664 ? S2 Cu2 Se3 113.88(4) 2_564 2_664 ? Se2 Cu2 Se3 113.88(4) 2_564 2_664 ? S3 Cu2 Se3 0.00(2) 2_664 2_664 ? S1 Cu2 Se3 103.51(4) 1_655 1_545 ? Se1 Cu2 Se3 103.51(4) 1_655 1_545 ? S2 Cu2 Se3 110.57(4) 2_564 1_545 ? Se2 Cu2 Se3 110.57(4) 2_564 1_545 ? S3 Cu2 Se3 105.77(3) 2_664 1_545 ? Se3 Cu2 Se3 105.77(3) 2_664 1_545 ? S1 Cu2 S3 103.51(4) 1_655 1_545 ? Se1 Cu2 S3 103.51(4) 1_655 1_545 ? S2 Cu2 S3 110.57(4) 2_564 1_545 ? Se2 Cu2 S3 110.57(4) 2_564 1_545 ? S3 Cu2 S3 105.77(3) 2_664 1_545 ? Se3 Cu2 S3 105.77(3) 2_664 1_545 ? Se3 Cu2 S3 0.00(2) 1_545 1_545 ? Se1 P1 Se2 112.21(9) . . ? Se1 P1 S3 108.35(6) . 2_565 ? Se2 P1 S3 109.11(6) . 2_565 ? Se1 P1 Se3 108.35(6) . 2_565 ? Se2 P1 Se3 109.11(6) . 2_565 ? S3 P1 Se3 0.00(3) 2_565 2_565 ? Se1 P1 S3 108.35(6) . 3_465 ? Se2 P1 S3 109.11(6) . 3_465 ? S3 P1 S3 109.70(8) 2_565 3_465 ? Se3 P1 S3 109.70(8) 2_565 3_465 ? Se1 P1 Se3 108.35(6) . 3_465 ? Se2 P1 Se3 109.11(6) . 3_465 ? S3 P1 Se3 109.70(8) 2_565 3_465 ? Se3 P1 Se3 109.70(8) 2_565 3_465 ? S3 P1 Se3 0.00(4) 3_465 3_465 ? P1 Se1 Cu2 116.17(4) . 1_455 ? P1 Se1 Cu2 116.17(4) . 4_655 ? Cu2 Se1 Cu2 110.56(5) 1_455 4_655 ? P1 Se1 Cu1 112.83(7) . . ? Cu2 Se1 Cu1 99.27(4) 1_455 . ? Cu2 Se1 Cu1 99.27(4) 4_655 . ? P1 Se2 Cu2 110.56(5) . 3_465 ? P1 Se2 Cu2 110.56(5) . 2_565 ? Cu2 Se2 Cu2 104.76(5) 3_465 2_565 ? P1 Se2 Cu1 111.78(7) . 1_556 ? Cu2 Se2 Cu1 109.47(4) 3_465 1_556 ? Cu2 Se2 Cu1 109.47(4) 2_565 1_556 ? P1 Se3 Cu2 110.00(6) 2_564 2_665 ? P1 Se3 Cu2 111.22(5) 2_564 1_565 ? Cu2 Se3 Cu2 111.33(2) 2_665 1_565 ? P1 Se3 Cu1 108.54(5) 2_564 1_655 ? Cu2 Se3 Cu1 103.53(4) 2_665 1_655 ? Cu2 Se3 Cu1 111.92(3) 1_565 1_655 ? _diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 26.99 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 0.905 _refine_diff_density_min -0.685 _refine_diff_density_rms 0.253