Supplementary Information: Journal of Materials Chemistry

High work function anode interfacial layer via mild temperature thermal decomposition of $C_{60}F_{36}$ thin film on ITO

Hong Ying Mao,^a Rui Wang,^b Jian Qiang Zhong,^b Shu Zhong,^a Jia Dan Lin,^b Xi Zu Wang,^c Zhi Kuan Chen,^c and Wei Chen^{*a,b}

^a Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543

^b Department of Physics, National University of Singapore, 3 Science Drive 2, Singapore 117542

^c Institute of Material Research & Engineering, 3 Research Link, 117602, Singapore

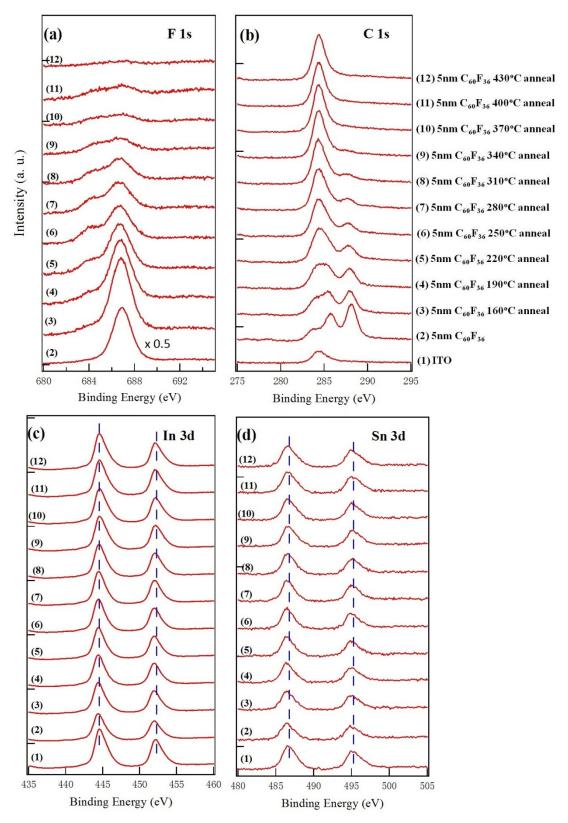


Figure S1. XPS spectra of (a) F 1s, (b) C 1s, (c) In 3d, and (d) Sn 3d core level evolution for $5.0 \text{ nm C}_{60}F_{36}$ thin film on ITO with increasing anneal temperature.