Supporting Information

Tunable solid-state photoluminescence based on protontriggered structural transformation of 4,4'-bipyridinium derivative

Xue-Jun Zhou,^{ab} Cheng Chen,^a Cai-Xia Ren,^{ab} Jian-Ke Sun^a and Jie Zhang^{*a}

^aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China; E-mail: <u>zhangjie@fjirsm.ac.cn</u>

^bGraduate School of Chinese Academy of Sciences, Beijing, 100039, P. R. China

Fig. S1 Luminescence decay curves for compounds1-3 at ambient temperature. The solid lines are the best fits of experimental data based on the multiexponential functions (I = A + A)

$$B_1 e^{-t/\tau_1} + B_2 e^{-t/\tau_2} + B_3 e^{-t/\tau_3}).$$

Fig. S2 IR spectra show the structural transformation when crystal 3 is exposed to NEt_3 vapor.

Fig. S3 A comparison of the experimental PXRD patterns of the crystal 3 exposed to NEt_3 vapor with those of compounds 1-3.