Electronic Supplementary Information

for

Highly efficient iridium(III) phosphors with phenoxy-substituted ligands and their high-performance OLEDs fabricated by both vacuum deposition and solution processing methods

Guiping Tan,^{a,b} Shuming Chen,^c Ning Sun,^d Yanhu Li,^e Daniel Fortin,^f Wai-Yeung Wong,^{*a} Hoi-Sing Kwok,^{*c} Dongge Ma,^{*d} Hongbin Wu,^{*e} Lixiang Wang,^d and Pierre D. Harvey^{*f}

Selected Bond	Bond Length (Å)	Selected Bond	Bond Length (Å)
Ir(1)-C(8)	2.004(3)	Ir(1)-N(1)	2.126(3)
Ir(1)-C(26)	2.021(3)	Ir(1)-N(2)	2.135(3)
Ir(1)-C(44)	2.003(3)	Ir(1)-N(3)	2.139(3)
Selected Angle	Bond Angle (°)	Selected Angle	Bond Angle (°)
C(44)-Ir(1)-C(8)	94.0(1)	C(26)-Ir(1)-N(2)	79.1(1)
C(44)-Ir(1)-C(26)	94.5(1)	N(1)-Ir(1)-N(2)	92.9(1)
C(8)-Ir(1)-C(26)	97.6(1)	C(44)-Ir(1)-N(3)	79.3(1)
C(44)-Ir(1)-N(1)	93.6(1)	C(8)-Ir(1)-N(3)	171.1(1)
C(8)-Ir(1)-N(1)	79.4(1)	C(26)-Ir(1)-N(3)	88.8(1)
C(26)-Ir(1)-N(1)	171.6(1)	N(1)-Ir(1)-N(3)	95.2(1)
C(44)-Ir(1)-N(2)	173.4(1)	N(2)-Ir(1)-N(3)	98.9(1)
C(8)-Ir(1)-N(2)	88.4(1)		

 $\label{eq:table_$

Selected Bond	Bond Length (Å)	Selected Bond	Bond Length (Å)
Ir(1)-C(9)	1.992(4)	Ir(1)-C(27)	1.992(4)
Ir(1)-N(1)	2.034(3)	Ir(1)-N(2)	2.042(3)
Ir(1)-O(3)	2.142(3)	Ir(1)-O(4)	2.163(3)
Selected Angle	Bond Angle (°)	Selected Angle	Bond Angle (°)
C(27)-Ir(1)-C(9)	93.7(2)	N(1)-Ir(1)-O(3)	89.9(1)
C(27)-Ir(1)-N(1)	94.0(1)	N(2)-Ir(1)-O(3)	95.1(1)
C(9)-Ir(1)-N(1)	81.4(1)	C(27)-Ir(1)-O(4)	90.3(1)
C(27)-Ir(1)-N(2)	81.1(1)	C(9)-Ir(1)-O(4)	174.4(1)
C(9)-Ir(1)-N(2)	96.4(1)	N(1)-Ir(1)-O(4)	94.4(1)
N(1)-Ir(1)-N(2)	174.5(1)	N(2)-Ir(1)-O(4)	88.2(1)
C(27)-Ir(1)-O(3)	175.8(1)	O(3)-Ir(1)-O(4)	87.7(1)
C(9)-Ir(1)-O(3)	88.7(1)		

 Table S2 Selected bond lengths and angles of 2.

Atom	% of electro	onic density
Atom	HOMO	LUMO
С	71.74	75.62
Н	4.34	6.05
Ο	4.98	3.27
Ν	6.28	12.59
Ir	12.70	2.48
Atom	% of electro	onic density
Atom	% of electro HOMO	onic density LUMO
Atom C	% of electro HOMO 65.15	onic density LUMO 71.57
Atom C H	% of electro HOMO 65.15 4.97	onic density LUMO 71.57 6.06
Atom C H O	% of electro HOMO 65.15 4.97 9.21	onic density LUMO 71.57 6.06 5.64
Atom C H O N	% of electro HOMO 65.15 4.97 9.21 4.80	onic density LUMO 71.57 6.06 5.64 11.31

Table S3 Computed electronic density of the frontier orbitals for 1 (up) and 2 (bottom).

Table S4 Calculated transition energy, position of the 0-0 peaks, oscillator strength (f) and major

No.	$v(cm^{-1})$	λ(nm)	f	Major contributions (%)
1	23990	416.8	0.025	HOMO→LUMO (94)
2	24279	411.8	0.010	HOMO \rightarrow L+1 (94)
3	24341	410.8	0.010	HOMO \rightarrow L+2 (94)
4	25792	387.7	0.034	H-2→LUMO (28), H-2→L+1 (10), H-1→LUMO (42)
5	25897	386.1	0.034	H-2→LUMO (51), H-2→L+1 (18), H-1→LUMO (15)
6	25954	385.2	0.029	H-2→L+1 (12), H-1→LUMO (24), H-1→L+2 (39)
7	26440	378.2	0.029	H-2→L+1 (39), H-1→L+2 (36)
8	26517	377.1	0.038	H-2→L+2 (36), H-1→L+1 (41)
9	26992	370.4	0.006	H-2→L+2 (26), H-1→L+1 (17), HOMO→L+3 (35)
10	28122	355.5	0.067	H-2→L+2 (14), H-1→L+1 (13), HOMO→L+3 (57)
11	28940	345.5	0.006	H-1→L+3 (83)
12	28986	344.9	0.007	H-2→L+3 (79)
13	29417	339.9	0.029	H-3→LUMO (11), HOMO→L+4 (70)
14	29491	339.1	0.035	HOMO→L+5 (74)
15	29912	334.3	0.010	H-3→LUMO (58)
16	30083	332.4	0.029	H-4→LUMO (56), H-3→L+1 (13)
17	30467	328.2	0.043	H-3→L+1 (12), H-3→L+2 (53)
18	30559	327.2	0.120	H-3→L+1 (40), H-3→L+2 (20)
19	30668	326.0	0.057	H-5→LUMO (11), H-4->L+1 (45)
20	30723	325.4	0.020	H-2→L+5 (13), H-1→L+4 (56)

contributions for the 20 first transitions for 1 (top) and 2 (below).

	$v(cm^{-1})$	$\lambda(nm)$	f	Major contributions (%)
1	23723	421.5	0.030	HOMO→LUMO (86)
2	24754	403.9	0.028	$HOMO \rightarrow L+1$ (84)
3	25494	392.2	0.022	H-1→LUMO (38), H-1→L+1 (55)
4	26066	383.6	0.033	H-1→LUMO (49), H-1→L+1 (36)
5	27677	361.3	0.006	HOMO \rightarrow L+2 (24), HOMO \rightarrow L+3 (67)
6	28039	356.6	0.013	H-4→LUMO (14), H-3→LUMO (20), H-2→LUMO (28)
7	28486	351.0	0.026	H-4→LUMO (10), HOMO→L+2 (52), HOMO→L+3 (12)
8	28705	348.3	0.000	H-1 \rightarrow L+2 (18), H-1 \rightarrow L+3 (61)
9	29109	343.5	0.023	H-4→L+1 (14), H-2→L+1 (29), H-1→L+2 (20), H-1→L+3 (10)
10	29523	338.7	0.074	H-3→LUMO (25), H-1→L+2 (24), HOMO→L+4 (17)
11	29694	336.7	0.016	H-4→LUMO (17), H-1→L+2 (23), HOMO→L+4 (36)
12	29810	335.4	0.028	H-3→LUMO (24), H-2→LUMO (33), HOMO→L+4 (25)
13	30428	328.6	0.113	H-3→L+1 (43), H-2→L+1 (28), H-1→L+4 (10)
14	30742	325.2	0.088	H-4→L+1 (15), H-2→L+1 (15), H-1→L+4 (56)
15	31156	320.9	0.277	H-4→LUMO (41), H-3→LUMO (18)
16	31355	318.9	0.111	H-4→L+1 (47), H-3→L+1 (21), H-1→L+4 (18)
17	32380	308.8	0.021	H-4→L+2 (17), H-3→L+2 (21), H-2→L+2 (53)
18	32902	303.9	0.027	H-3→L+3 (21), H-2→L+3 (58)
19	33490	298.5	0.009	H-3→L+2 (27), H-3→L+3 (14), H-2→L+2 (24), H-2→L+3 (11)

H-3 \rightarrow L+2 (16), H-3 \rightarrow L+3 (13), H-3 \rightarrow L+4 (10), H-2 \rightarrow L+3 (16), 20 33690 296.8 0.044 H-2 \rightarrow L+4 (17)

Table S5 Computation of the triplet state positions for 1 and 2 in the gas phase.

Complex	$E(S_0)$ (a.u.)	$E(T_1)$ (a.u.)	Δ (a.u.)	$\Delta (eV)$	position (nm)
1	-2577.90	-2577.79	0.102	2.77	447
2	-2098.78	-2098.69	0.092	2.50	495

Table S6 Key characteristics of the three-component WOLEDs with Ir(ppy)₃.

	V _{turn-on} (V)	$L_{\rm max} ({\rm cd}\ { m m}^{-2})$ @15 V	$\eta_{\rm ext}$ (%) ^a	$\eta_{ m L}$ $({ m cd} { m A}^{-1})^a$	$\eta_{ m P} \ ({ m lm}{ m W}^{-1})^a$	$CIE \\ (\mathbf{x}, \mathbf{y})^b$	CRI/CCT (K)
W4	4	26493	2.1 (4.4)	16.2 (5.4)	10.7 (4.6)	0.50, 0.37	64/2002
W5	4	27850	8.7 (5.6)	16.7 (5.6)	9.6 (5.4)	0.49, 0.38	69/2117
W6	4	35418	8.3 (5.6)	17 (5.6)	10.8 (4.8)	0.43, 0.39	79/2995

^{*a*} Maximum values of the devices. Values in parentheses are the voltages at which they were obtained. ^{*b*} CIE coordinates (x, y) at 8 V.

Fig. S1 Bar graph of the first 100 calculated electronic transitions for **1** (green) along with a spectrum generated by assigning a thickness to these lines (red). This graph does not include the vibronic progression.

Fig. S2 Bar graph of the first 100 calculated electronic transitions for **2** (green) along with a spectrum generated by assigning a thickness to these lines (red). This graph does not include the vibronic progression.

Fig. S3 The EL spectra for G4 under different driving voltages.

Fig. S4 Energy level diagram of OLEDs with BCP/Alq₃ or TPBi.

Fig. S5 Charts for the PLEDs **G15** and **G16** doped with **1** and **2**, respectively. (a) J-V curves; (b) L-V curves; (c) η_L-J curves; (d) $\eta_{ext}-J$ curves and (e) η_P-J curves.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is C The Royal Society of Chemistry 2012

Fig. S6 Molecule structures of BCzVBi and Ir(2-phq)₂(acac).

Fig. S7 Charts for the hybrid WOLEDs **W4–W6** doped with *fac*-Ir(ppy)₃, respectively. (a) *L–V* curves; (b) η_L –*J* curves; (c) η_P –*V* curves and (d) η_{ext} –*J* curves.

Fig. S8 EL spectra of the 2-doped WOLED at different voltages.