Supporting Information

Selective Excitation of Eu³⁺ in the Core of Small β-NaGdF₄ Nanocrystals

Mateusz Banski,^a Artur Podhorodecki,^{*a} Jan Misiewicz,^a Mohammad Afzaal,^b Ahmed Lutfi Abdelhady^c and Paul O'Brien^c

^a Institute of Physics, Wroclaw University of Technology Wroclaw, 50-370, Poland.

^b Center of Research Excellence in Renewable Energy King Fahd University of Petroleum and Minerals, PO Box 1292, Dhahran, 31261, Saudi Arabia

^c The Manchester Materials Science Centre and School of Chemistry, The University of Manchester, Manchester, M13 9PL, United Kingdom

Figure S1. Absorption cross section (σ) of gadolinium trifluoroacetates (Gd TFA₃), precursor used in NCs synthesis, and commonly used organic fluorophore (Rhodamine 6G).

	NaGdF ₄				Rhodamine 6G
NC diameter [nm]	3.0	5.2	11.0	21.0	1 molecule
Number of Gd ³⁺ in NC	~200	~1 000	~10 000	~65 000	
σ (cm ²)	$1,40.10^{-18}$	$7,00 \cdot 10^{-18}$	$7,00 \cdot 10^{-17}$	$4,55 \cdot 10^{-16}$	$4 \cdot 10^{-16}$

Table 1S. Calculated absorption cross section (σ) of NaGdF₄ NCs containing different amount of Gd³⁺. σ of Rhodamine 6G is given for comparison.