Supporting Information

Rectification direction inversion in a phosphododecamolybdic acid / single-walled carbon nanotube junction

Liu Hong, Hirofumi Tanaka and Takuji Ogawa*

Department of Chemistry, Graduate School of Science, Osaka University

1-1 Machikaneyama, Toyonaka 560-0043, Japan

^{*} Address correspondence to ogawa@chem.sci.osaka-u.ac.jp

Figure S1. Experimental setup for measurement of the electronic properties of PMo_{12} adsorbed on SWNT using PCI-AFM. Detailed procedure of PCI-AFM measurement can be found in the literatures published previously.¹⁻³

Figure S2. Plots of $log_e(RR)$ observed by PCI-AFM vs. PMo_{12} nanoparticle height for (a) $PMo_{12}/semiconducting$ SWNT complex and (b) $PMo_{12}/metallic$ SWNT complex. Each graph is obtained from *I-V* data of three individual $PMo_{12}/SWNT$ complexes, which are indicated by red square, blue triangle and green circle respectively. Dashed lines are used just as guides to the eye. As the PMo_{12} nanoparticle size increases, $log_e(RR)$ decreases in the case of semiconducting SWNT, while increases for metallic SWNT, therefore the reproducibility of the results of rectification direction inversion is confirmed.

Figure S3. Plots of CPD value against complex height of $PMo_{12}/semiconducting$ SWNT for three individual complexes. Dashed lines are used just as guides to the eye. In all the three plots, CPD value decreases as complex height increases. Therefore, the reproducibility of the relationship between CPD value and height of PMo_{12} particle on semiconducting SWNT is confirmed.

Figure S4. Plots of CPD value against complex height of $PMo_{12}/\underline{metallic}$ SWNT in three individual complexes. Dashed lines are used just as guides to the eye. In all the three plots, CPD value increases as complex height increases. Therefore, the reproducibility of the relationship between CPD value and height of PMo_{12} particle on metallic SWNT is confirmed.

	$H_3PMo_{12}O_{40}$	$H_4PMo_{12}O_{40}^{+}$	$H_4PMo_{12}O_{40}^{\bullet}$	$H_4PMo_{12}O_{40}$	(13,0) SWNT
LUMO-9	0.0887098	-3.65152	-0.719475	1.80222	-1.50399
LUMO-8	0.0693896	-3.8733	-0.854716	1.63977	-1.68848
LUMO-7	-0.214972	-3.97779	-0.968189	1.58426	-1.68875
LUMO-6	-0.2996	-4.27277	-1.02397	1.53582	-1.69392
LUMO-5	-0.448175	-4.39005	-1.36357	1.21527	-1.75107
LUMO-4	-0.568178	-4.49781	-1.38698	1.2003	-1.86263
LUMO-3	-0.879479	-4.86217	-1.4248	1.05527	-1.86318
LUMO-2	-1.0988	-4.99959	-1.7859	0.882472	-2.28768
LUMO-1	-1.1886	-5.20694	-1.87352	0.737434	-2.76824
LUMO	-1.4531	-5.38436	-2.12523	0.531987	-3.06511
номо	-2.17067	-6.25023	-3.14022	-0.398922	-4.26134
HOMO-1	-2.53721	-6.33323	-3.25396	-0.442461	-4.58325
HOMO-2	-2.70511	-6.82467	-3.39165	-0.525728	-5.03115
HOMO-3	-2.97504	-7.03365	-3.70295	-0.984516	-5.63335
HOMO-4	-3.0496	-7.16944	-3.98514	-1.14833	-5.68042
HOMO-5	-3.32281	-7.28645	-4.03657	-1.30915	-5.68124
HOMO-6	-3.4703	-7.48836	-4.10977	-1.39024	-5.70546
HOMO-7	-3.89316	-8.00157	-4.3359	-1.6327	-5.94138
HOMO-8	-4.12256	-8.21246	-4.91659	-2.10645	-5.94192
HOMO-9	-4.18732	-8.32022	-5.11605	-2.29231	-6.03961
HOMO-LUMO	0 71757	0 86587	1 01499	0 930909	1 19623
gap	0.71757	0.00507	1.01477	0.730707	1.17025
HOMO-LUMO	-1 811885	-5 817295	-2 632725	0.0665325	-3 663225
average energy	1.011000	5.017275	-2.032123	0.0003323	5.005225

Table S1. Calculated molecular orbital energies (eV) for PMo_{12} and SWNT

References for Supporting Information

- 1 H.Tanaka, T. Yajima, T. Matsumoto, Y. Otsuka and T. Ogawa, Adv. Mater., 2006, 18, 1411.
- 2 T. Yajima, H. Tanaka, T. Matsumoto, Y. Otsuka, Y. Sugawara and T. Ogawa, Nanotechnology, 2007, 18, 095501.
- 3 Y. Otsuka, Y. Naitoh, T. Matsumoto and T. Kawai, Jpn. J. Appl. Phys., 2002, 41, L742.