
Supporting information

Figure S1. Upconverted fluorescence spectra of NaYF₄: Yb³⁺, Tm³⁺/CdS nanoheterostructure with different ratio of CdS to NaYF₄: Yb³⁺, Tm³⁺ (excited by 980nm laser with same power). The inset fugure was the integral area of 802nm emission with different ratio of CdS to NaYF₄: Yb³⁺, Tm³⁺

 $\textbf{\textit{Figure S2.}} \ \text{The effect of } Cd^{2^{+}} \ \text{and} \ S^{2^{-}} \ \text{on the upconverted fluorescence spectrum of } NaYF_{4}: \ Yb, Tm$

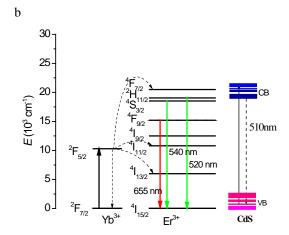


Figure S3. a.Upconverted fluorescence spectra of NaYF₄: Yb^{3+} , Er^{3+} nanocrystals and NaYF₄: Yb^{3+} , Er^{3+}/CdS nanoheterostructure excited with same power laser (980nm), b. Schematic of the excitation of NaYF₄: Yb^{3+} , Tm^{3+} and energy level of NaYF₄: Yb^{3+} , Tm^{3+} and CdS

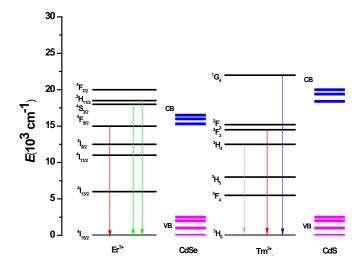


Figure S4. Schematic diagram of the energy level of Er3+, Tm3+, CdS and CdSe

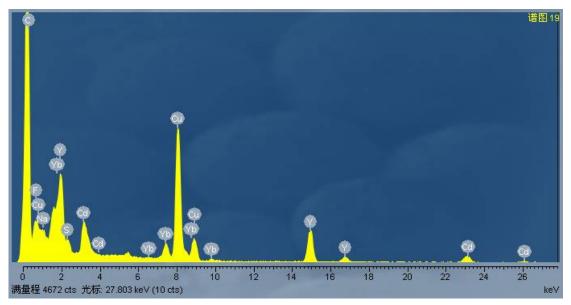


Figure S5. EDX spectrum of NaYF4:Yb,Tm/CdS hnanoeterostructures, indicating the presence of elements of Na, Y, F, Yb, Cd, S.