Supporting Information

Synthesis and Electroluminescence Properties of Highly Efficient Blue Fluorescence Emitters Using Dual Core Chromophores

By Beomjin Kim, Youngil Park, Jaehyun Lee, Daisuke Yokoyama, Ji-Hoon Lee, Junji Kido and Jongwook Park*

Fig. S1 ¹H NMR spectrum of TP-P-TP.

Fig. S2 ¹³C NMR spectrum of TP-P-TP.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 Fig. S4 ¹³C NMR spectrum of Ph-AP-Ph.

Fig. S6 ¹³C NMR spectrum of TP-AP-TP.

Fig. S7 Chemical structures with the lowest excitation energies for the dual core chromophore materials used in this study. The structures were optimized by DFT B3LYP/6-31G(d) calculations.

Fig. S8 Optical anisotropy of the TP-P-TP film: anisotropic refractive indices n and extinction coefficients k. The solid lines $(n_o \text{ and } k_o)$ and dotted lines $(n_e \text{ and } k_e)$ indicate the horizontal (ordinary) and vertical (extraordinaly) components of the optical constants, respectively. MAM data was described in ref. 16.

Fig. S9 Transient electroluminescence responses of a ITO/2-TNATA (60nm)/NPB (15m)/ Synthesized materials (35nm)/Alq₃ (20nm)/LiF (1nm)/Al (200nm) device with various excitation pulse voltages. (a) TP-P-TP, (b) Ph-AP-Ph, and (c) TP-AP-TP. MAM data was described in ref. 16.

Fig. S10 Angular distribution patterns of the radiance from the devices.