Comparative studies on the electronic properties of the representative benzo[1,2-c;4,5c']bis[1,2,5]thiadiazole, [1,2,5]-thiadiazolo[3,4-g]quinoxaline and pyrazino[2,3-g]quinoxaline derivatives

Hairong Li, Feng Zhou, Teck Lip Dexter Tam, Yeng Ming Lam, Subodh G. Mhaisalkar, Haibin Su* and Andrew C. Grimsdale*

School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore.

Energy Research Institute @ NTU (ERI@N), 50 Nanyang Drive, 637553 Singapore.
*Corresponding Author.Email: $\underline{\text { HBSu@ntu.edu.sg , ACGrimsdale@ntu.edu.sg }}$

## Experimental Details

Materials and Equipments. All reagents were purchased from Sigma-Aldrich and used without further purification, unless otherwise stated. Column chromatography was carried out with Merck silica (230 - 400 mesh) while thin layer chromatography (TLC) were performed on Merck silica 60 Al-backed plates ( $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ ). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were obtained on a Bruker DPX 400 MHz spectrometer with chemical shifts referenced to $\mathrm{CDCl}_{3}$. Matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra were obtained on a Shimadzu Biotech AXIMA-TOF ${ }^{2}$. Elemental analysis was obtained via a Thermo Scientific Flash 2000 Series CHNS/O Analyzer. UVVis absorption spectra were recorded on a Lambda 900 Spectrometer from Perkin Elmer. Emission spectra were recorded on a RF-5301Spectrofluorophotometer. Cyclic voltammetry experiments were
performed using a Multichannel Potentiostat (Model 1470E) from Solartron Analytical. All CV measurements were recorded in dichloromethane (DCM) with 0.1 M tetrabutylammonium hexafluorophosphate as supporting electrolyte (scan rate of $100 \mathrm{mV} \cdot \mathrm{s}^{-1}$ ). The experiments were performed at room temperature with a conventional three electrodes configuration consisting of a platinum wire working electrode, a gold counter electrode, and an $\mathrm{Ag} / \mathrm{AgCl}$ in 3 M KCl reference electrode. The measured potentials were converted to orbital energies by using value of SCE (saturated calomel electrode) having potential of -4.4 eV relative to vacuum.

Calculation Method. Atomistic simulation, using density function theory (DFT) at B3LYP [1,2] and TD-B3LYP (which includes the gradient corrected exchange and correlation functionals along with the exact exchange) method with double- $\zeta$ quality basis functions $6-31 G^{*}$ (augmented with polarized function for all non-hydrogen atoms), was used to optimize the geometry of all the molecules. Geometry was fully relaxed and no symmetry constraints were imposed during optimization using Gaussian 09 code [3] with a convergence criterion of $10^{-3}$ a.u. on the gradient and displacement and $10^{-6}$ a.u on energy and electron density. Harmonic vibrational analyses showed no imaginary frequency, indicating these structures are a local minimum.

4,7-Dihexylbenzo[c][1,2,5]thiadiazole-5,6-diamine (2). Compound 1 ( $0.5 \mathrm{~g}, 1.54 \mathrm{mmol}$ ), n hexylboronic acid ( $0.6 \mathrm{~g}, 4.62 \mathrm{mmol}$ ), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\left(0.1 \mathrm{~g}, 0.12 \mathrm{mmol}\right.$ ), dioxane ( 30 ml ) and $\mathrm{CsCO}_{3}$ ( $2 \mathrm{M} \mathrm{aq}, 20 \mathrm{ml}$ ) were added to a one neck round bottom flask purged with $\mathrm{N}_{2}$ gas, the mixture were stirred at $60{ }^{\circ} \mathrm{C}$ for 1 d , cooled down and poured into water, then extracted with dichloromethane (DCM). The organic layer was collected, dried over anhydrous $\mathrm{MgSO}_{4}$, and concentrated. The residue was recrystalized from methanol and used immediately without further purification due to its gradual decomposition in air.

4,7-Dihexylbenzo[1,2-c;4,5-c’]bis[1,2,5]thiadiazole (BBT-X1). N-thionylaniline (0.33 g, 2.39 mmol ) was added dropwise to a solution of compound $2(0.2 \mathrm{~g}, 0.60 \mathrm{mmol})$ in chloroform ( 15 ml ) in a flask purged with $\mathrm{N}_{2}$, followed by slow addition of TMSCl ( $0.26 \mathrm{~g}, 2.39 \mathrm{mmol}$ ) and pyridine ( 0.19 g , 2.39 mmol ) at room temperature. The mixture was heated to reflux for 1 d , cooled down and poured into water, then extracted with DCM. The organic layer was collected, dried over anhydrous $\mathrm{MgSO}_{4}$ and concentrated. The residue was purified by chromatography, eluting with hexane/DCM (1/1) to yield 90 mg of a dark red solid (33\% yield calculated from compound $\mathbf{1}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$ : 2.96 (t, $4 \mathrm{H}, \mathrm{J}=7.6, \mathrm{PhCH}_{2}$ ), 1.65 (quintet, $4 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}$ ), $1.25-1.36$ (m, $12 \mathrm{H}, \mathrm{CH}_{2}$ ), $0.87\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 156.1,134.7,31.52,29.51,28.79,28.60$, 22.56, 14.07. MALDI-TOF-MS m/z: $362.1578\left(\mathrm{M}^{+}\right)$; calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{~S}_{2}: 362.1599$. Anal calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{~S}_{2}$ : C, 59.63; H, 7.23; N, 15.45; S, 17.69; found: 59.46; H, 7.27; N, 15.86; S, 17.44.

4,7-Dihexyl-[1,2,5]selenadiazolo[3,4-f]-2,1,3-benzothiadiazole (SBT-X1). A mixture of compound $2(0.2 \mathrm{~g}, 0.60 \mathrm{mmol})$ and $\mathrm{SeO}_{2}(66 \mathrm{mg}, 0.60 \mathrm{mmol})$ in $\mathrm{EtOH}(20 \mathrm{ml})$ was refluxed for 2 d . The cooled mixture was filtered, and the crude solid was eluted through silica with DCM to afford a dark purple solid (145 mg, $46 \%$ calculated from compound 1$).{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 3.08(\mathrm{t}, 4 \mathrm{H}$, $\mathrm{J}=8 \mathrm{~Hz}, \mathrm{PhCH}_{2}$ ), 1.79 (quintet, $4 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}$ ), 1.31-1.33 (m, 12H, CH2), $0.89(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}$ $\left.=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)}$ : 158.5, 155.8, 134.1, 32.8, 32.3, 30.3, 29.9, 23.3, 14.7. MALDI-TOF-MS m/z: $410.0904\left(\mathrm{M}^{+}\right)$; calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{SSe}$ : 410.1043. Anal calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{SSe}$ : C, 52.80; H, 6.40; N, 13.68; S, 7.83; found: C, 52.66; H, 6.49; N, 13.93, S, 7.96.

5,6-Dinitrobenzo[c][1,2,5]thiadiazole (4). N-thionylaniline ( $5.57 \mathrm{~g}, 40.0 \mathrm{mmol}$ ) was added dropwise into the suspension of compound $3(2 \mathrm{~g}, 10.0 \mathrm{mmol})$ in chloroform $(50 \mathrm{ml})$ in a flask purged with $\mathrm{N}_{2}$, followed by slow addition of $\mathrm{TMSCl}(4.34 \mathrm{~g}, 40.0 \mathrm{mmol})$ and pyridine ( $3.16 \mathrm{~g}, 40.0 \mathrm{mmol}$ ) at room temperature. The whole solution was then heated to reflux for 1 d , cooled, poured into water, and then extracted with DCM. The organic layer was collected, dried over anhydrous $\mathrm{MgSO}_{4}$ and concentrated. The crude product was recrystalized from a mixture of hexane with $10 \%$ of ethyl acetate to afford pale yellow crystals ( $1.47 \mathrm{~g}, 65 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 9.22$ (s, 2H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 171.7,152.0,110.9$. Anal calcd for $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 31.86 ; \mathrm{H}, 0.89 ; \mathrm{N}, 24.77$; S, 14.18; found: C, 31.65; H, 0.92; N, 25.01, S, 14.36.

3,6-Bis(3,5-di-tert-butylphenyl)phenanthrene-9,10-dione (6). Compound 5 (2 g, 5.46 mmol ) and 3,5-di-tert-butylphenylboronic acid ( $2.81 \mathrm{~g}, 12.0 \mathrm{mmol}), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.38 \mathrm{~g}, 0.33 \mathrm{mmol})$, toluene $(40 \mathrm{ml})$ and
$\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M} \mathrm{aq}, 30 \mathrm{ml})$ were added to a one neck round bottom flask purged with $\mathrm{N}_{2}$, the mixture was stirred at $85^{\circ} \mathrm{C}$ for 1 d , cooled, poured into water, and then extracted with DCM. The organic layer was collected, dried over anhydrous $\mathrm{MgSO}_{4}$ and concentrated. The crude was purified by chromatography, eluted with hexane/DCM (2/3) to afford yellow fluffy crystals (2.80 g, $88 \%) .{ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$ :
8.30 (d, 2H, J = 7.6 Hz, Phenan-H), 8.29 (d, 2H, J = 7.6 Hz , Phenan-H), 7.72 (dd, 2H, J = 8 Hz , PhenanH), 7.56 ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{PhH}$ ), $7.54(\mathrm{~s}, 4 \mathrm{H}, \mathrm{PhH}), 1.41\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 180.9,152.5$, 150.5, 139.6, 136.8, 131.8, 130.4, 129.1, 123.9, 123.5, 122.3, 35.7, 32.1. MALDI-TOF-MS m/z: 584.70
$\left(\mathrm{M}^{+}\right)$; calcd for $\mathrm{C}_{42} \mathrm{H}_{48} \mathrm{O}_{2}$ : 584.37. Anal calcd for $\mathrm{C}_{42} \mathrm{H}_{48} \mathrm{O}_{2}$ : C, 86.26; H, 8.27; found: C, 86.02; H, 8.29.

4,7-Bis(thien-2'-yl)-[1,2,5]selenadiazolo[3,4-f]-2,1,3-benzothiadiazole (SBT-X2). A mixture of compound $8(0.2 \mathrm{~g}, 0.61 \mathrm{mmol})$ and $\mathrm{SeO}_{2}(67 \mathrm{mg}, 0.61 \mathrm{mmol})$ in $\mathrm{EtOH}(20 \mathrm{ml})$ was refluxed for 1 d . The cooled mixture was filtered, and the crude solid was quickly filtered through silica with DCM to afford a dark purple solid with $53 \%$ yield ( 130 mg ). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 9.01(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=4.8$ $\mathrm{Hz}, \mathrm{Th} \mathbf{H}$ ), 7.71 (d, 2H, J = $4.8 \mathrm{~Hz}, \mathrm{Th} \mathbf{H}$ ), 7.33 (quartet, $2 \mathrm{H}, \mathrm{J}=4.8 \mathrm{~Hz}, \mathrm{ThH}$ ). MALDI-TOF-MS m/z: $405.9018\left(\mathrm{M}^{+}\right)$; calcd. for $\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~S}_{3} \mathrm{Se}$ : 405.8920. Anal calcd for $\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~S}_{3} \mathrm{Se}: \mathrm{C}, 41.48 ; \mathrm{H}, 1.49$; N , 13.82; S, 23.73; found: C, 41.27; H, 1.45; N, 14.10; S, 23.51.

## 6,7-Bis(4'-butoxy-1',4-biphen-1-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline (TQ-X0). Compound

$4(0.3 \mathrm{~g}, 1.33 \mathrm{mmol})$ and iron powder ( $1.48 \mathrm{~g}, 26.5 \mathrm{mmol}$ ) were suspended in acetic acid ( 30 ml ) and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 6 hr under $\mathrm{N}_{2}$ to form intermediate 7. The excess iron powder was removed using magnetic bar, followed by addition of 1,2-bis(4’-butoxy-1',4-biphen-1-yl)-ethanedione (9) $(0.67 \mathrm{~g}, 1.33 \mathrm{mmol})$ in one portion. The reaction was stirred at $80^{\circ} \mathrm{C}$ for 2 d , then poured into water and extracted with DCM. The organic layer was collected, dried over anhydrous $\mathrm{MgSO}_{4}$ and concentrated. The crude was purified by chromatography, eluted with hexane/DCM (1/2) to obtain red brown solid ( $0.60 \mathrm{~g}, 72 \%$ ). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 9.02(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhH}), 7.74(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}$, BiPhH), $7.61(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{BiPh} \mathbf{H}), 7.58(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \operatorname{BiPh} H), 6.98(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}$, $\operatorname{BiPhH}), 4.02\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 1.80$ (quintet, $4 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$ ), $1.51(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.99\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 160.0,156.3,153.0,143.5,138.8$, 136.4, 132.8, 131.5, 128.8, 127.2, 115.6, 114.6, 68.5, 32.0, 19.9, 14.5. MALDI-TOF-MS m/z: 636.2851 ( $\mathrm{M}^{+}$); calcd for $\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$ : 636.2559. Anal calcd for $\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$ : C, 75.44; H, 5.70; N, 8.80; S, 5.04; found: 75.36; H, 5.72; N, 8.96; S, 5.14.

## 3,6-Bis(3,5-di-tert-butylphenyl)phenanthrene)-[1,2,5]thiadiazolo[3,4-g]quinoxaline (TQ-Y0).

TQ-Y0 was prepared as TQ-X0 above, substituting compound $\mathbf{6}$ for compound $\mathbf{9}$ to give an orange solid with yield of $75 \%$. ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$ : $9.28(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}$, Phenan-H), $8.81(\mathrm{~s}, 2 \mathrm{H}$, core-PhH), 8.47 (s, 2H, Phenan-H), 8.00 (dd, 2H, J = 8.0 Hz , Phenan-H), 7.71 (s, 4H, PhH ), 7.57 (s,
$2 \mathrm{H}, \mathrm{PhH}), 1.47\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 152.6,152.4,146.8,146.6,140.3,139.4$, 134.1, 129.2, 128.8, 123.3, 122.6, 122.5, 114.4, 35.8, 32.2. MALDI-TOF-MS m/z: $714.3809\left(\mathrm{M}^{+}\right)$; calcd for $\mathrm{C}_{48} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{~S}$ : 714.3756. Anal calcd for $\mathrm{C}_{48} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{~S}$ : C, 80.63; H, 7.05; N, 7.84; S, 4.48; found: 80.51; H, 7.09; N, 7.98; S, 4.36.

Bis[(3,6-bis(3,5-di-tert-butylphenyl)phenanthrene)]-pyrazino[2,3-g]quinoxaline (PQ-Y0). A mixture of compound $\mathbf{1 0}(120 \mathrm{mg}, 0.42 \mathrm{mmol})$ and compound $\mathbf{6}(494 \mathrm{mg}, 0.84 \mathrm{mmol})$ was added to a round bottom flask containing glacial acetic acid ( 25 ml ). The reaction was stirred at $130{ }^{\circ} \mathrm{C}$ for 2 d . The reaction mixture was cooled down and poured into water, filtered and the solids were washed with water and ethanol. Column chromatography was carried out using hexane/DCM (1/1) to obtain a red solid (340 mg, $65 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, \delta \mathrm{ppm}$ ): $9.66(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}$, Phenan-H), $9.62(\mathrm{~s}, 2 \mathrm{H}$, core-PhH), 8.82 (s, 4H, Phenan-H), 8.15 (d, 4H, J = 8.4 Hz , Phenan-H), 7.88 (s, 8H, PhH), 7.66 (s, $4 \mathrm{H}, \mathrm{PhH}), 1.48\left(\mathrm{~s}, 72 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 156.6,152.3,146.5,145.4,142.2,140.6$, 134.0, 129.2, 128.6, 128.5, 122.7, 122.6, 121.9, 35.8, 32.2. MALDI-TOF-MS m/z: $1237.8221\left(\mathrm{M}^{+}\right)$; calcd for $\mathrm{C}_{90} \mathrm{H}_{100} \mathrm{~N}_{4}$ : 1237.7982. Anal calcd for $\mathrm{C}_{90} \mathrm{H}_{100} \mathrm{~N}_{4}$ : C, 87.33; H, 8.14; N, 4.53; found: 87.08; H, 8.19; N, 4.65.

4,7-Bis(5'-hexylthien-2'-yl)-benzo[1,2-c;4,5-c’]bis[1,2,5]thiadiazole (13). Compound 11 ( 0.4 g , $1.14 \mathrm{mmol})$, compound $12(1.30 \mathrm{~g}, 2.84 \mathrm{mmol})$ and $\mathrm{Pd}\left[\mathrm{PPh}_{3}\right]_{2} \mathrm{Cl}_{2}(48 \mathrm{mg}, 0.068 \mathrm{mmol})$ were added to
a round bottom flask purged with $\mathrm{N}_{2}$, followed by injection of anhydrous THF ( 40 ml ). The reaction was stirred under reflux for 2 d . The cooled mixture was poured into water, and extracted with DCM.

The organic layer was collected, dried over anhydrous $\mathrm{MgSO}_{4}$ and concentrated. The residue was purified by chromatography, eluting with hexane/DCM (1/1) to obtain a dark blue solid ( $0.5 \mathrm{~g}, 84 \%$ ). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 8.70(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4 \mathrm{~Hz}, \mathrm{Th} \mathbf{H}), 6.95(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4 \mathrm{~Hz}, \mathrm{Th} \mathbf{H}), 2.94(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, \mathrm{ThCH}_{2}$ ), 1.81 (quintet, 4H, $\mathrm{ThCH}_{2} \mathrm{CH}_{2}$ ), 1.34-1.49 (m, 12H, CH2), 0.92 (t, 6H, J = 7.2 Hz , $\left.\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 152.6,151.5,136.0,133.4,126.1,113.8,32.3,32.2,31.1,29.6,23.3$, 14.8. MALDI-TOF-MS m/z: 526.1285 ( $\mathrm{M}^{+}$); calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{~S}_{4}$ : 526.1353. Anal calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{~S}_{4}$ : C, 59.28; H, 5.74; N, 10.64; S, 24.35; found: 59.10; H, 5.85; N, 10.89; S, 24.12.

## 3,6-Bis(3,5-di-tert-butylphenyl)phenanthrene)-4,7-bis(5'-hexylthien-2'-yl)-[1,2,5]thiadiazolo

[3,4-g]quinoxaline (TQ-Y2). Compound 13 ( $0.2 \mathrm{~g}, 0.38 \mathrm{mmol}$ ) and iron powder ( $0.42 \mathrm{~g}, 7.60 \mathrm{mmol}$ )
were suspended in glacial acetic acid $(20 \mathrm{ml})$ and the mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 6 hr to form
intermediate 14, excess iron was removed using a magnetic bar, followed by addition of compound 6
( $0.22 \mathrm{~g}, 0.38 \mathrm{mmol}$ ) in one portion. The reaction was stirred at $80^{\circ} \mathrm{C}$ for 2 d , poured into water, and extracted with DCM. The organic layer was collected, dried over anhydrous $\mathrm{MgSO}_{4}$ and concentrated. The residue was purified by chromatography, eluting with hexane/DCM (3/1) to obtain a greenish or dark brown (colour depended on the molecular packing during drying) solid ( $0.26 \mathrm{~g}, 65 \%$ ). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 9.43(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}$, Phenan-H), $8.73(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4 \mathrm{~Hz}, \mathrm{ThH}), 8.69(\mathrm{~s}, 2 \mathrm{H}$, Phenan-
H), 7.91 (dd, 2H, J = 8 Hz , Phenan-H), 7.71 (s, 4H, PhH), 7.58 (s, 2H, PhH), 6.95 (d, 2H, J = 4 Hz ,

ThH ), $3.00\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{ThCH}_{2}\right), 1.88$ (quintet, $4 \mathrm{H}, \mathrm{ThCH}_{2} \mathrm{CH}_{2}$ ), 1.40-1.49 (m, 48H, CH2 and t-
$\left.\mathrm{Bu}-\mathrm{CH}_{3}\right), 0.92\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 152.5,152.2,151.9,145.4,144.1$, 140.7, 136.4, 134.5, 134.1, 133.9, 130.1, 128.0, 125.0, 123., 122.6, 122.3, 121.3, 35.8, 32.4, 32.3, 31.0, 29.7, 23.3, 14.8. MALDI-TOF-MS m/z: $1046.5865\left(\mathrm{M}^{+}\right)$; calcd for $\mathrm{C}_{68} \mathrm{H}_{78} \mathrm{~N}_{4} \mathrm{~S}_{3}:$ 1046.5389. Anal calcd for $\mathrm{C}_{68} \mathrm{H}_{78} \mathrm{~N}_{4} \mathrm{~S}_{3}$ : C, 77.96; H, 7.50; N, 5.35; S, 9.18; found: 77.75; H, 7.57; N, 5.52; S, 9.09.

Bis[(3,6-bis(3,5-di-tert-butylphenyl)phenanthrene)]-4,7-bis(5'-hexylthien-2'-yl)-pyrazino[2,3-
glquinoxaline (PQ-Y2). Compound 13 ( $0.2 \mathrm{~g}, 0.38 \mathrm{mmol}$ ) and zinc powder ( $0.74 \mathrm{~g}, 11.4 \mathrm{mmol}$ ) were suspended in glacial acetic acid ( 20 ml ) and the mixture was stirred at $90{ }^{\circ} \mathrm{C}$ for 12 hr to form intermediate 15 (whereas iron can be retrieved by a magnetic bar, the reaction for 12 hr to consume all excess zinc in the acid was required because could zinc can further reduce the later formed PQ-Y2), followed by addition of compound $\mathbf{6}(0.44 \mathrm{~g}, 0.76 \mathrm{mmol})$ in one portion. The reaction was stirred at 50
${ }^{\circ} \mathrm{C}$ for 4 d , poured into water, and extracted with DCM. The organic layer was collected, dried over anhydrous $\mathrm{MgSO}_{4}$ and concentrated. The residue was purified by chromatography, eluting with hexane/DCM (3/1) to obtain a purple red solid ( $0.22 \mathrm{~g}, 37 \%$ ). 9.54 (d, 4H, J = 8 Hz , Phenan-H), 8.85 (s, 4H, J = $4 \mathrm{~Hz}, 2 \mathrm{H}$, Phenan-H), 8.50 (d, 2H, J = $4 \mathrm{~Hz}, \mathrm{ThH}$ ), 8.07 (d, 4H, J = 8.4 Hz , Phenan-H), 7.72 (s, 8H, PhH), 7.71 (dd, 2H, J = 4H, ThH), 7.57 (s, 4H, PhH), 3.20 (t, 4H, J = 7.6 Hz, ThCH2),
2.05 (quintet, $4 \mathrm{H}, \mathrm{ThCH}_{2} \mathrm{CH}_{2}$ ), 1.67 (quintet, $4 \mathrm{H}, \mathrm{CH}_{2}$ ), 1.47 (s, $72 \mathrm{H}, \mathrm{t}-\mathrm{Bu}-\mathrm{CH}_{3}$ ), $1.25-1.42$ (m, 8 H ,
$\left.\mathrm{CH}_{2}\right), 0.96\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 163.8,152.3,145.4,143.7,140.8$, 138.4, 135.4, 133.9, 133.8, 131.5, 130.7, 130.4, 129.4, 129.3, 128.3, 124.7, 122.9, 122.6, 35.8, 32.7, 32.5, 32.2, 29.7, 23.3, 14.8. MALDI-TOF-MS m/z: $1569.8923\left(\mathrm{M}^{+}\right)$; calcd for $\mathrm{C}_{110} \mathrm{H}_{128} \mathrm{~N}_{4} \mathrm{~S}_{2}$ : 1569.9614. Anal calcd for $\mathrm{C}_{110} \mathrm{H}_{128} \mathrm{~N}_{4} \mathrm{~S}_{2}$ : C, 84.13; H, 8.22; N, 3.57; S, 4.08; found: 83.89; H, 8.31; N, 3.72; S, 3.90.










Compound 6


Current Data Paramatara Name
EXFNO
PROCNO
11030

F2 - Acquisition Paramate:


Time
INSTEUM 12.54 PROBHD 5 EE PABBO EE

| PULFFOG | Ig 30 |
| :--- | ---: |
| TD | 65536 |
| SOLVENT | CDC13 |
| NS |  |

SOL
NB
ONH
$\begin{array}{ll}\text { GNH } & 9279.146 \text { 日: } \\ \text { TIDES } & 0.126314 \text { 日: }\end{array}$

| FIDFES | 0.126314 Bz |
| :--- | ---: |
| AQ | 3.9584243 sc |
| RG | 60.400 uz |
| DW | 6.00 us |
| DE | 299.2 F |


| D1 | 2.00000000 K |
| :--- | :--- |
| TD0 |  |


| suC1 1 l <br> $\mathrm{P}_{1} 1$ 12.50 us <br> $\mathrm{P}_{\mathrm{L}}$ -2.00 dz |  |
| :---: | :---: |
|  |  |
|  |  |

PFO1 400.1324710


PSB
LB
GB
PC
0.30 Hz
0.02








| $m m$ | $\bigcirc 00$ |
| :---: | :---: |
| ㅇor | ¢ |
| . | -. |
| $\infty \times$ | r 6 |



为


Compound 13



Current Data Farameters

| SANE | 101024 |
| :--- | :--- |
| EXPNO |  | PROCNO

F2 - Acquisition Parameters
 Time
IMSTRLM
FRCEHD FRCEHD
FULPRCC
5 FULPRCG
TD
SOLVENT
NS
NS
DS
SWH

5 ■ FABE
3 ■ FR Be 14.18
$2 V 400$

 8278.146 Hz
0.126314 Hz
3.9584243 gac 322.5
60.400 use 60.400 uss
6.00 use
295.5 K 295.5 K
1.0000000 se $\begin{array}{ll}\mathrm{TE} & \\ \text { D1 } & 1.000\end{array}$
$\qquad$
$\begin{array}{lr}\text { NUC1 } & 12.5 \mathrm{H} \\ \mathrm{Fl}_{1} & -2.50 \mathrm{use} \\ \mathrm{FLH}_{\mathrm{F}} & -2.00 \mathrm{~dB} \\ \mathrm{SFO} & 400.1324710 \mathrm{NHz}\end{array}$
F2-Frocessing paraneters
SI
SF
NTO
KCN
SSB
LB
GB
FC
20
0.30 Hz
$0.10^{\circ}$


Compound 13









TQ－Y2

がッツッドゅ



| Current | Data Fazameters 110420 |
| :---: | :---: |
| EXPYO | － |
| OCA | 1 |
| F2－Moguisition paraneters |  |
|  | 20110420 |
| ${ }_{\text {INSTRLM }}$ |  |
| FFoemb | 5 ee flezo ek－ |
| fllproc | zgrg ${ }_{5} 36$ |
| solve | $\mathrm{CCOLS}^{\text {c }}$ |
| ws | 2734 |
| ${ }_{\text {DS }}$ |  |
|  | ${ }^{23980.814 ~ H z}$ |
| ${ }_{40}{ }_{4}$ | 0.369918 1.366475680 000 |
| ${ }_{\text {ng }}^{0 \times 0}$ | 1448.2 |
| D＊ | $\begin{array}{r}20.850 \\ 6.000 \\ \hline 50 \mathrm{c}\end{array}$ |
| ${ }_{\text {T2 }}$ | 297.7 K |
| D1 | 2.00000000 sec |
| 011 | 0.03000000 sec |
| $\frac{\mathrm{DELITA}}{\text { TDO }}$ | ${ }_{1.89999998 ~}^{1}$ |
|  |  |
|  | ${ }_{0}^{136}$ |
| ${ }_{\text {FLI }}$ | $-3.00 \mathrm{dE}$ |
| 9 SFO | 100.6228298 mHz |
| ammel |  |
| CFDPRG | 16 |
| ${ }_{\text {FCPO2 }}$ | 80.00 use |
| FL2 | －2．00 dE |
| $\mathrm{FLL}^{2}$ | 14.12 dE |
| $\mathrm{FLL}^{\text {che }}$ | 14.00 dE |
| 9502 | 400.1316005 nHz |
| F2－Prosessing paranoters |  |
|  | 100.6127006 |
| ${ }_{\text {WLS }}^{\text {ces }}$ Em |  |
| ${ }_{\text {Lem }}^{\text {Lem }}$ |  |
|  |  |





Figure S1. Cyclic voltammetry spectra for all newly synthesized BBT, TQ and PQ molecules (PQ-X0 and PQ-X2 can be found in our previous report [4]).


Figure S2. The plot of the calculated HOMO and LUMO energy together with the experimental data.

## References

[1] Becke, A. D., J. Chem. Phys. 1993, 98, 5648.
[2] Lee, C.; W. Yang, W.; Parr, R. G., Phys. Rev. B 1988, 37, 785.
[3] Refer to the website http://www.gaussian.com/g_tech/g_ur/m_citation.html
[4] Tam, T. L.; Zhou, F.; Li, H.; Yu Pang, J. C.; Lam, Y. M.; Mhaisalkar, S. G.; Su, H.; Grimsdale, A. C., J. Mater. Chem. 2011, 21, 17798.

