Supplementary Information

First-principles Thermodynamic Calculations and Experimental Investigation of

Sr-Si-N-O System—Synthesis of Sr₂Si₅N₈:Eu Phosphor

Yongseon Kim¹, Jaecheol Kim² and Shinhoo Kang^{2,*}

¹Department of Materials Science and Engineering, Inha University, Incheon, 402-751, Korea

²Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742, Korea

Author E-mail: <u>ys.kim@inha.ac.kr</u> <u>cheol@snu.ac.kr</u> <u>shinkang@snu.ac.kr</u>

	0				
Compounds	Space group	Energy (eV/tu)	Compounds	Space group	Energy
Sr ₅ Si ₃	I 4/mcm	-27.771	S_2N_2O	$I4_1/amd$	-39.705
SrSi	Стст	-8.096	SiO ₂	Р 6 ₃ /ттс	-23.691
SrSi	Immm	-7.919	SiO ₂	P6 ₂ 22	-23.701
SrSi ₂	$I4_1/amd$	-13.820	SiO ₂	P3 ₁ 21	-23.704
SrSi ₂	P4 ₃ 32	-13.579	SrO ₂	I 4/mmm	-17.235
Sr_4Si_7	I 4 ₁ /amd	-48.319	SrO	$Fm\overline{3}m$	-12.093
Sr ₂ Si ₃	I 4 ₁ /amd	-20.991	SrSiO ₃	ΡĪ	-37.000
SrN	C 2/m	-11.067	SrSiO ₃	P 2 ₁ /c	-36.913
SrN ₂	I 4/mmm	-19.836	SrSiO ₃	C 2/c	-37.094
Sr ₂ N	R3m	-13.339	Sr2SiO ₄	Pmnb	-49.729
SrN_6	Fddd	-52.992	Sr ₃ SiO	Pbnm	-22.066
Sr_3N_2	Ia3	-24.256	SrN ₂ O ₆	Pa3	-57.976
Si ₃ N ₄	I43d	-56.569	SrSi ₂ O ₅	Стса	-59.567
Si_3N_4	P31c	-57.267	$SrSi_2N_2O_2$	<i>P</i> 1	-52.326
Si_3N_4	Fd3m	-56.235	Sr ₃ SiO ₅	P 4/ncc	-61.837
SrSiN ₂	P 2 ₁ /c	-28.488	SrSi ₆ N ₈ O	Imn2	-126.871
SrSi ₆ N ₈	Imm2	-117.585			
$Sr_2Si_5N_8$	Pmn2 ₁	-114.978	Sr	Fm3m	-1.682
$SrSi_7N_{10}$	Pc	-143.193	Si	Fd3m	-5.425

S1. Crystal structure and energy (eV/formula unit) of Sr–Si–N–O system compounds obtained by density functional theory calculation: the energy was used for simulation of phase diagrams.

S2. DFT calculation results of energy of Eu-doped compounds: doping amount of Eu, energy of Eudoped compounds, and energy change of each compound with Eu-doping relative to those of the undoped.

	Eu/(Eu+Sr)	E (eV/fu)	$(E-E_{undoped})/E_{undoped}$
SrSi	1/16 (6.25 %)	-8.103	-0.093 %
SrSi ₂	1/16 (6.25 %)	-13.684	+0.983 %
SrSiO ₃ (Sr1)	1/12 (8.33 %)	-37.172	-0.212 %
SrSiO ₃ (Sr2)	1/12 (8.33 %)	-37.171	-0.208 %
Sr_2SiO_4 (Sr1)	1/16 (6.25 %)	-49.850	-0.242 %
Sr_2SiO_4 (Sr2)	1/16 (6.25 %)	-49.873	-0.288 %
SrSiN ₂	1/16 (6.25 %)	-28.545	-0.203 %
SrO	1/32 (3.13 %)	-12.131	-0.312 %
$Sr_2Si_5N_8$ (Sr1)	1/8 (12.5 %)	-115.212	-0.203 %
$Sr_2Si_5N_8$ (Sr2)	1/8 (12.5 %)	-115.208	-0.200 %
$SrSi_6N_8$ (Sr1)	1/4 (25.0 %)	-117.732	-0.125 %
$SrSi_6N_8$ (Sr2)	1/8 (12.5 %)	-117.657	-0.061 %

S3. Change of phase diagrams with different energy values of $SrSi_2N_2O_2$: (a) It is assumed that Sr atoms are not dispersed over different sites but occupies only one type of crystallographic site. This is a simplification for DFT calculation, but it was reported that Sr occupies two sites (with 80:20 ratio). The dispersion may appear because it is energetically more favorable. If we assume actual energy of $SrSi_2N_2O_2$ is about 92% of the calculated energy and simulate phase diagram using this value, $SrSi_2N_2O_2$ appeared as a thermodynamic stable phase, as shown in (b). (both of the diagrams are simulated at 1500K under HRN condition.)

S4. Chemical potential of oxygen: the 0 K chemical potential was determined from combination of formation enthalpies of various metal oxides and DFT-calculated energies, as discussed in the manuscript. The effects of temperature and pressure were reflected based on the data in JANAF thermochemical tables using the following equation:

$$\mu_{O_2}(T,P) = H^o(T) - TS^o(T) + k_B T \ln \frac{P}{P^o}$$

We present chemical potential of oxygen at $p_{0_2} = 0.1$ MPa and 0.02MPa in the following table as an example.

Т (К)	$\mu_{0_2}(eV)$			
1 (11)	p ₀₂ = 0.1 MPa	p ₀₂ =0.02 MPa		
0	-8.450	-8.450		
100	-8.585	-8.599		
200	-8.763	-8.790		
298	-8.952	-8.993		
300	-8.956	-8.997		
400	-9.158	-9.214		
500	-9.368	-9.437		
600	-9.583	-9.666		
700	-9.803	-9.900		
800	-10.028	-10.138		
900	-10.256	-10.381		
1000	-10.488	-10.627		
1100	-10.724	-10.877		
1200	-10.963	-11.130		
1300	-11.205	-11.386		
1400	-11.450	-11.644		
1500	-11.698	-11.906		
1600	-11.948	-12.170		
1700	-12.200	-12.436		
1800	-12.455	-12.704		
1900	-12.711	-12.975		
2000	-12.970	-13.247		

S5. Chemical potential of nitrogen gas, which is calculated in the same manner with that of oxygen shown in S4.

T (K)	$\mu_{N_2}(eV)$		
	$p_{N_2} = 0.1 \text{ MPa}$	$p_{N_2} = 0.08 \text{ MPa}$	
0	-16.050	-16.050	
100	-16.186	-16.187	
200	-16.363	-16.366	
298	-16.552	-16.557	
300	-16.556	-16.561	
400	-16.759	-16.767	
500	-16.970	-16.979	
600	-17.187	-17.198	
700	-17.409	-17.422	
800	-17.636	-17.651	
900	-17.867	-17.884	
1000	-18.101	-18.121	
1100	-18.340	-18.361	
1200	-18.581	-18.604	
1300	-18.825	-18.850	
1400	-19.072	-19.098	
1500	-19.321	-19.350	
1600	-19.573	-19.603	
1700	-19.827	-19.859	
1800	-20.083	-20.117	
1900	-20.341	-20.378	
2000	-20.601	-20.640	