Supplementary Information

Highly Efficient Green Organic Light-Emitting Diodes Containing Luminescent Tetrahedral Copper(I) Complexes

Satoshi Igawa,^{*a,b*} Masashi Hashimoto,^{*a,b*} Isao Kawata,^{*a,c*} Masataka Yashima,^{*a,b*} Mikio Hoshino^{*a*} and Masahisa Osawa^{*,*a*}

^aLuminescent Materials Laboratory, RIKEN, Hirosawa 2-1, Wako-Shi, 351-0198, Japan. ^bDevice Technology Development Headquartersc, Ohta-ku, Tokyo 146-8501, Japan. ^cAnalysis Technology Center, Canon Incorporated, Ohta-ku, Tokyo 146-8501, Japan.

Contents

Experimental Details	Page
1.Synthetic Details	S3 - S5
2. NMR Experiments	S5 - S14
Fig. S1 ¹ H NMR spectrum of dppb-F in CD ₂ Cl ₂ at 300 K.	
Fig. S2 13 C NMR spectrum of dppb-F in CD ₂ Cl ₂ at 300 K.	
Fig. S3 19 F { 1 H} NMR spectrum of dppb-F in CD ₂ Cl ₂ at 300 K.	
Fig. S4 31 P { 1 H} NMR spectrum of dppb-F in CD ₂ Cl ₂ at 300 K.	
Fig. S5 ¹ H NMR spectrum of dppb-CF ₃ in CD_2Cl_2 at 300 K.	
Fig. S6 13 C NMR spectrum of dppb-CF ₃ in CD ₂ Cl ₂ at 300 K.	
Fig. S7 19 F { 1 H} NMR spectrum of dppb-CF ₃ in CD ₂ Cl ₂ at 300 K.	
Fig. S8 31 P { 1 H} NMR spectrum of dppb-CF ₃ in CD ₂ Cl ₂ at 300 K.	
Fig. S9 ¹ H NMR spectrum of 1 in CD_2Cl_2 at 300 K.	
Fig. S10 13 C NMR spectrum of 1 in CD ₂ Cl ₂ at 300 K.	
Fig. S11 ³¹ P { ¹ H} NMR spectrum of 1 in CD_2Cl_2 at 300 K.	
Fig. S12 ¹ H NMR spectrum of 2 in CD_2Cl_2 at 300 K.	
Fig. S13 13 C NMR spectrum of 2 in CD ₂ Cl ₂ at 300 K.	
Fig. S14 ¹⁹ F { ¹ H} NMR spectrum of 2 in CD_2Cl_2 at 300 K.	
Fig. S15 ³¹ P { ¹ H} NMR spectrum of 2 in CD_2Cl_2 at 300 K.	
Fig. S16 ¹ H NMR spectrum of 3 in CD_2Cl_2 at 300 K.	
Fig. S17 13 C NMR spectrum of 3 in CD ₂ Cl ₂ at 300 K.	
Fig. S18 ¹⁹ F { ¹ H} NMR spectrum of 3 in CD_2Cl_2 at 300 K.	
Fig. S19 31 P { 1 H} NMR spectrum of 3 in CD ₂ Cl ₂ at 300 K.	

3. Crystal Structure Determination

Table S1 Crystallographic data for 1 - 3

4. Cyclic Voltammagram Measurement

Fig. S20 Cyclic voltammagram of diphosphine ligands (dppb, dppb-F, and dppb-CF₃) **Fig. S21** Cyclic voltammagram of Cu(I) complexes (1 - 3).

5. Theoretical Studies

Fig. S22 NTO pairs for the lowest triplet excited state of 1 in the optimized T_1 geometry. Fig. S23 NTO pairs for the lowest triplet excited state of 2 in the optimized T_1 geometry.

Table S2 Compositions of hole and electron in T_1 of **3**. (optimized T_1 geometry in THF) **Table S3** Compositions of hole and electron in T_1 of **1**. (optimized T_1 geometry in THF) **Table S4** Compositions of hole and electron in T_1 of **2**. (optimized T_1 geometry in THF)

Fig. S24 NTO pairs for the lowest triplet excited state of 1 in the optimized S₀ geometry.Fig. S25 NTO pairs for the lowest triplet excited state of 2 in the optimized S₀ geometry.

Table S5 Compositions of hole and electron in T_1 of **3**. (optimized S_0 geometry in THF) **Table S6** Compositions of hole and electron in T_1 of **1**. (optimized S_0 geometry in THF) **Table S7** Compositions of hole and electron in T_1 of **2**. (optimized S_0 geometry in THF)

Fig. S26 NTO pairs for the first singlet excited state of 1 in the optimized S_0 geometry. Fig. S27 NTO pairs for the first singlet excited state of 2 in the optimized S_0 geometry.

Table S8 Compositions of hole and electron in S_1 of **3** (optimized S_0 geometry in THF) **Table S9** Compositions of hole and electron in S_1 of **1** (optimized S_0 geometry in THF) **Table S10** Compositions of hole and electron in S_1 of **2** (optimized S_0 geometry in THF)

6. The angular distribution of light emission from OLEDs containing 1-3 S23-S24 Fig. S28 The angular distribution of light emission from the device containing 1. Fig. S29 The angular distribution of light emission from the device containing 2. Fig. S30 The angular distribution of light emission from the device containing 3.

7. References

S24

S15

S16

S17-S23

Experimental Details 1. Synthetic Details

Materials. 1,2-Bis(dichlorophosphino)benzene and magnesium were obtained from Wako Pure Chemical Industries, Ltd. 3,5-Difluorophenylmagnesium bromide and bromo(dimethylsulfide)copper(I) $(CuBr \cdot SMe_2)$ were purchased Sigma-Aldrich. from 1-Bromo-3,5-bistrifluoromethylbenzene was obtained from TCI. Co., Ltd. Iodine was purchased from Kanto Chemical Co., Inc. Di-[4-(N,N-ditolyl-amino)-phenyl]cyclohexane (TAPC), 1,3-bis(carbazol-9-yl)benzene (mCP), and tris(2,4,6-trimethyl-3-(pyridine-3-yl)phenyl)borane (3TPYMB) were purchased from Lumitec Corp. Potassium diphenylbis(pyrazol-1-yl)borate (KBpz₂ph₂) and [(dppb)CuBr]₂ were prepared according to literature procedures.^{1,2}

Synthesis of dppb-F. A solution of 3,5-difluorophenyl magnesium bromide in THF (0.5M, 50 mL, 25 mmol) was added dropwise to a solution of 1,2-bis(dichlorophosphino)benzene (1.0 g, 3.57 mol) in THF (20 mL) at 0 °C. The reaction mixture was stirred at room temperature for 4 h. A solution of saturated aqueous NH₄Cl (100 mL) was added to the reaction mixture, and extracted with CH₂Cl₂ (3 × 60 mL). The combined organic extracts were washed with saturated aqueous NaCl (150 mL) and dried over MgSO₄. The drying agent was removed by filtration, and the solvent was removed *in vacuo* to give a pale yellow oil. The residue was purified by column chromatography on silica gel (*n*-hexane/CH₂Cl₂, 2:1) to afford dppb-F (933 mg, 47%) as a colorless solid. ¹H NMR (500 MHz, CD₂Cl₂, 300 K): δ 6.69 (m, 8H), 6.79 (m, 4H), 7.11 (m, 4H), 7.43 (m, 2H); ¹³C NMR (125 MHz, CD₂Cl₂, 300 K): δ 104.89, (t, *J*_{C-P} = 25.2 Hz), 116.41 (m), 130.82, 134.52 (t, *J*_{C-P} = 3.4 Hz), 140.26 (m), 141.54 (t, *J*_{C-P} = 10.9 Hz), 162.21 (m), 164.12 (m); ¹⁹F NMR (377 MHz, CD₂Cl₂, 300 K): δ -111.66; ³¹P {¹H} NMR (202 MHz, CD₂Cl₂, 300 K): δ -9.60. Anal. calcd. for C₃₀H₁₆F₈P₂ (%): C, 61.03; H, 2.73. Found: C, 61.29; H, 2.81.

Synthesis of dppb-CF₃. A solution of 3,5-bis(trifluoromethyl)phenyl magnesium bromide was prepared from magnesium (3.0 g, 125 mmol) and 1-bromo-3,5-bis(trifluoromethyl)benzene (36.5 g, 125 mmol) in THF (100 mL), and then cooled to 0 °C. A solution of 1,2-bis(dichlorophosphino)benzene (5.0 g, 16.8 mol) in THF (20 mL) was added dropwise to the solution of 3,5-bis(trifluoromethyl)phenyl magnesium bromide. The reaction mixture was stirred at room temperature for 4 h. A solution of saturated aqueous NH₄Cl (100 mL) was added to the reaction mixture, and then the mixture was extracted with CH₂Cl₂ (3×80 mL). The combined organic extracts were washed with saturated aqueous NaCl (150 mL) and dried over MgSO₄. The drying agent was removed by filtration, and the solvent was removed *in vacuo* to give a pale yellow oil. The residue was purified by column chromatography on silica gel (*n*-hexane/CH₂Cl₂, 2:1) to

afford dppb-CF₃ (12.4 g, 74%) as a colorless solid. ¹H NMR (500 MHz, CD₂Cl₂, 300 K): δ 7.23 (m, 2H), 7.54 (m, 2H), 7.03 (m, 8H), 7.90 (m, 4H); ¹³C NMR (125 MHz, CD₂Cl₂, 300 K): δ 122.93 (q, J_{C-F} = 271.5 Hz), 123.87, 131.93, 132.40 (qt, J_{C-F} = 33.7, J_{C-P} = 3.2 Hz), 133.50 (2C), 134.73 (t, J_{C-P} = 3.1 Hz), 135.09 (t, J_{C-P} = 5.5 Hz), 140.41 (t, J_{C-P} = 11.4 Hz); ¹⁹F NMR (377 MHz, CD₂Cl₂, 300 K): δ -65.92. ³¹P {¹H} NMR (202 MHz, CD₂Cl₂, 300 K) δ -11.46. Anal. calcd. for C₃₈H₁₆F₂₄P₂ (%): C, 46.08; H, 1.63. Found: C, 46.42; H, 1.89.

Cu(dppb)(**pz**₂**Bph**₂) (1). KBpz₂ph₂ (338 mg, 0.5 mmol) was added to a solution of [(dppb)CuBr]₂ (236 mg, 0.2 mmol) in THF (15 mL). The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was filtered, and the solvent was removed *in vacuo* to give a pale yellow powder. The residue was purified by recrystallization from CH₂Cl₂ / *n*-hexane to give yellow crystals (268 mg, 83%). ¹H NMR (500 MHz, CD₂Cl₂, 300 K) δ 6.02 (t, 2H, *J* = 2.0 Hz), 6.70 (m, 4H), 6.82 (t, 4H, *J* = 7.0 Hz), 6.87 (m, 2H), 6.89 (m, 2H), 7.02-7.06 (m, 8H), 7.23 (m, 10H), 7.32 (t, 4H, *J* = 7.0 Hz), 7.41-7.46 (m, 4H); ¹³C NMR (125 MHz, CD₂Cl₂, 300 K) δ 102.72, 125.49, 126.68, 128.42 (t, *J*_{C-P} = 4.4 Hz), 129.20, 130.39, 133.17 (t, *J*_{C-P} = 8.2 Hz), 133.71, 134.14 (t, *J*_{C-P} = 14.2 Hz), 134.85 (t, *J*_{C-P} = 3.9 Hz), 136.98, 141.63, 143.24 (t, *J*_{C-P} = 32.5 Hz); ³¹P {¹H} NMR (202 MHz, CD₂Cl₂, 300 K) δ -8.71.Anal. calcd. for C₄₈H₄₀BCuN₄P₂ (%): C, 71.25; H, 4.98; N, 6.92. Found: C, 71.03; H, 5.10; N, 6.72.

Cu(dppb-F)(pz₂Bph₂) (2). A solution of dppb-F (354 mg, 0.6 mmol) in THF (20 mL) was added dropwise to the a solution of CuBr·SMe₂ (124 mg, 0.6 mmol) in THF (10 mL). The reaction mixture was stirred at room temperature for 1 h. A solution of KBpz₂ph₂ (146 mg, 0.73 mmol) in THF (10 mL) was added to the reaction mixture, and then it was stirred at room temperature for 1 h. The solvent was removed from the reaction mixture *in vacuo* to give a pale yellow oil. The residue was purified by recrystallization from CH₂Cl₂ / *n*-hexane to give yellow crystals (406 mg, 71%). ¹H NMR (500 MHz, CD₂Cl₂, 300 K): δ 6.16 (m, 2H), 6.59 (m, 8H), 6.68 (m, 4H), 6.86 (m, 4H), 6.92 (m, 6H), 6.97 (m, 2H), 7.33 (m, 2H), 7.44 (m, 2H), 7.61 (m, 2H); ¹³C NMR (125 MHz, CD₂Cl₂, 300 K): δ 103.36, 105.74 (t, J_{C-P} = 25.1 Hz), 124.74, 115.79 (dt, J_{C-F} = 26.0, J_{C-P} = 8.7 Hz), 125.68, 126.87, 132.10, 133.47, 135.01 (t, J_{C-P} = 3.6 Hz), 136.55 (m), 137.85, 140.71 (t, J_{C-P} = 33.2 Hz), 141.51, 161.13 (dt, J_{C-F} = 11.8, J_{C-P} = 6.6 Hz), 164.13 (dt, J_{C-F} = 11.8, J_{C-P} = 6.6 Hz); ¹⁹F NMR (377 MHz, CD₂Cl₂, 300 K): δ -111.47; ³¹P {¹H} NMR (202 MHz, CD₂Cl₂, 300 K) δ -7.98. Anal. calcd. for C₄₈H₃₂BCuF₈N₄P₂ (%): C, 60.49; H, 3.38; N, 5.88. Found: C, 60.71; H, 3.27; N, 5.69.

 $[Cu(dppb-CF_3)(pz_2Bph_2)$ (3). A solution of dppb-CF₃ (600 mg, 0.6 mmol) in THF (20 mL) was added dropwise to a solution of CuBr·SMe₂ (124 mg, 0.6 mmol) in THF (10 mL). The reaction mixture was stirred at room temperature for 1 h. A solution of KBpz₂ph₂ (146 mg, 0.73 mmol) in

THF (10 mL) was added to the reaction mixture, which was then stirred at room temperature for 1 h. The solvent was removed *in vacuo* to give a pale yellow oil, which was purified by recrystallization from CH₂Cl₂ / *n*-hexane to give yellow crystals (416 mg, 51%). ¹H NMR (500 MHz, CD₂Cl₂, 300 K): δ 6.24 (t, 2H, *J* = 2.0 Hz), 6.57 (m, 4H), 6.76 (m, 6H), 7.06 (d, 2H, *J* = 2.0 Hz), 7.37 (m, 2H), 7.39 (d, 2H, *J* = 2.0 Hz), 7.55 (m, 8H), 7.69 (m, 2H), 7.91 (m, 4H); ¹³C NMR (125 MHz, CD₂Cl₂, 300 K): δ 119.55, 122.81 (q, *J*_{C-F} = 271.5 Hz), 124.74, 125.81, 126.66, 132.58 (qt, *J*_{C-F}=33.7, *J*_{C-F}= 4.6 Hz), 132.87 (2C), 132.98 133.28, 135.02 (t, *J*_{C-F} = 13.2 Hz), 135.09 (t, *J*_{C-F} = 4.1 Hz), 138.47, 139.88 (t, *J*_{C-F} = 33.6 Hz), 141.62; ¹⁹F NMR (377 MHz, CD₂Cl₂, 300 K): δ -66.61; ³¹P {¹H} NMR (202 MHz, CD₂Cl₂, 300 K) δ -12.01. Anal. calcd. for C₅₆H₃₂BCuF₂₄N₄P₂ (%): C, 49.71; H, 2.38; N, 4.14. Found: C, 49.65; H, 2.21; N, 4.32.

2. NMR Experiments

Fig. S1 ¹H NMR spectrum of dppb-F in CD_2Cl_2 at 300 K.

Fig. S2 13 C NMR spectrum of dppb-F in CD₂Cl₂ at 300 K.

Fig. S3 19 F NMR spectrum of dppb-F in CD₂Cl₂ at 300 K.

Fig. S4 ³¹P {¹H} NMR spectrum of dppb-F in CD_2Cl_2 at 300 K.

Fig. S5 1 H NMR spectrum of dppb-CF₃ in CD₂Cl₂ at 300 K

Fig. S6 13 C NMR spectrum of dppb-CF₃ in CD₂Cl₂ at 300 K.

Fig. S7 ¹⁹F {¹H} NMR spectrum of dppb-CF₃ in CD_2Cl_2 at 300 K.

Fig. S8 ³¹P {¹H} NMR spectrum of dppb-CF₃ in CD_2Cl_2 at 300 K.

Fig. S9 ¹H NMR spectrum of 1 in CD₂Cl₂ at 300 K.

Fig. S10 13 C NMR spectrum of **1** in CD₂Cl₂ at 300 K.

Fig. S11 ³¹P { 1 H} NMR spectrum of **1** in CD₂Cl₂ at 300 K.

Fig. S12 ¹H NMR spectrum of **2** in CD_2Cl_2 at 300 K.

Fig. S13 13 C NMR spectrum of **2** in CD₂Cl₂ at 300 K.

Fig. S14 ¹⁹F { 1 H} NMR spectrum of **2** in CD₂Cl₂ at 300 K.

Fig. S15 31 P { 1 H} NMR spectrum of 2 in CD₂Cl₂ at 300 K.

Fig. S16 ¹H NMR spectrum of 3 in CD₂Cl₂ at 300 K

Fig. S17 ¹³C NMR spectrum of **3** in CD_2Cl_2 at 300 K.

Fig. S18 19 F { 1 H} NMR spectrum of 3 in CD₂Cl₂ at 300 K.

Fig. S19 ^{31}P { ^{1}H } NMR spectrum of 3 in CD₂Cl₂ at 300 K.

3. Crystal Structure Determination

Table S1 Crystallographic data for 1–3

	1	2	3
formula	$C_{48}H_{40}BCuN_4P_2CH_2Cl_2$	$C_{48}H_{32}BCuF_8N_4P_2$	$C_{56}H_{32}BCuF_{24}N_4P_2$
formula weight	894.06	953.07	1353.15
cryst syst	monoclinic	triclinic	orthorhmbic
space group	$P2_{1}/c$	$Par{1}$	Pbca
<i>a</i> / Å	9.6512 (8)	12.4467 (2)	12.6861 (16)
b / Å	22.813 (2)	13.2352 (11)	20.390 (3)
<i>c</i> / Å	19.5335 (17)	13.7652 (9)	44.345 (6)
α / deg	-	89.778 (4)	-
β / deg	93.960 (2)	70.725 (4)	-
γ/\deg	-	78.648(3)	-
$V / \text{\AA}^3$	4290.4(6)	2094.0(3)	11471(2)
Ζ	4	2	8
$d_{\rm calcd}$ / g cm ⁻³	1.384	1.512	1.567
T / K	90.0(1)	90.0(1)	90.0(1)
radiation	Μο Κα	Μο Κα	Μο Κα
	$(\lambda=0.71073~\text{\AA})$	$(\lambda = 0.71073 \text{ Å})$	$(\lambda = 0.71073 \text{ Å})$
μ/cm^{-1}	0.749	0.675	0.557
diffractometer	Rigaku AFC-8	Rigaku AFC-8	Rigaku AFC-8
max 20 / deg	60	60	60
reflns collcd	115869	29243	75702
indep reflns	13634	12050	16699
	(<i>R</i> int = 0.061)	(<i>R</i> int = 0.023)	(<i>R</i> int = 0.0755)
no. of param refined	574	7578	820
R1, wR2 ($I > 2\sigma I$)	0.0677, 0.1658	0.0297, 0.0802	0.0671, 0.1561
S	1.120	1.087	1.132

4. Cyclic Voltammagram Measurement

Fig. S20 Cyclic voltammagram of dppb (red), dppb-F (green), and dppb-CF₃ (blue) in CH₃CN at 293 K.

Fig. S21 Cyclic voltammagram of 1 (red), 2 (green), and 3 (blue) in CH₃CN at 293 K.

5. Theoretical Studies

Fig. S22 NTO pairs for the lowest triplet excited state of **1** in the optimized T_1 geometry. The generation probabilities are 99.5 %.

hole

electron

Fig. S23 NTO pairs for the lowest triplet excited state of 2 in the optimized T_1 geometry. The generation probabilities are 99.7 %.

	percentage composition (%) ^a		
	hole	electron	differences
Cu	38.4	0.64	37.8
P1	13.6	1.06	12.5
P2	15.1	7.00	8.08
N1	6.21	0.06	6.15
N3	6.55	0.03	6.52
P and N (total)	41.5	8.15	33.4
others	20.1	91.2	-71.1

Table S2. Compositions of hole and electron in T_1 of **3** (the optimized T_1 geometry in THF)

	percentage composition (%) ^a		
	hole	electron	differences
Cu	34.5	0.587	33.9
P1	15.2	3.58	11.6
P2	16.7	2.67	14.0
N1	4.87	0.06	4.81
N3	4.37	0.02	4.35
P and N (total)	41.1	6.33	35.1
others	24.4	93.1	-67.7

Table S3. Compositions of hole and electron in T_1 of **1**. (the optimized T_1 geometry in THF)

^{*a*} In the molecular orbitals, the atomic component is evaluated by the sum of the square of the LCAO coefficients which belong to the corresponding atom; see experimental section in detail.

	percentage composition (%) ^a		
	hole	electron	differences
Cu	38.9	1.08	37.8
P1	13.3	9.07	4.19
P2	15.8	0.95	14.9
N1	6.02	0.20	5.82
N3	5.69	0.027	5.66
P and N (total)	40.8	10.3	30.5
others	20.3	89.7	-69.4

Table S4. Compositions of hole and electron in T_1 of **2**. (the optimized T_1 geometry in THF)

hole

electron

Fig. S24 NTO pairs for the lowest triplet excited state of 1 in the optimized S_0 geometry. The generation probabilities are 94.4 %.

Fig. S25 NTO pairs for the lowest triplet excited state of 2 in the optimized S_0 geometry. The generation probabilities are 93.4 %.

	percentage composition (%) ^a		
	hole	electron	differences
Cu	30.2	0.97	29.3
P1	14.3	4.76	9.57
P2	15.6	2.03	13.6
N1	3.71	0.20	3.51
N3	2.70	0.082	2.62
P and N (total)	40.8	10.3	30.5
Others	29.0	88.7	-59.7

Table S5 Compositions of hole and electron in T_1 of 3 (optimized S_0 geometry in THF)

^{*a*} In the molecular orbitals, the atomic component is evaluated by the sum of the square of the LCAO coefficients which belong to the corresponding atom; see experimental section in detail.

	percentage composition (%) ^a		
	hole	electron	differences
Cu	28.6	0.65	28.0
P1	16.6	3.90	12.7
P2	17.6	2.59	15.0
N1	1.29	0.10	1.19
N3	1.64	0.072	1.57
P and N (total)	37.1	6.66	30.4
Others	34.3	92.7	-58.4

Table S6 Compositions of hole and electron in T_1 of **1** (optimized S_0 geometry in THF)

	percentage composition (%) ^a		
	hole	electron	differences
Cu	31.0	1.66	29.3
P1	15.0	6.65	8.35
P2	15.7	5.42	10.3
N1	2.29	0.40	1.90
N3	2.60	0.097	2.50
P and N (total)	35.6	14.23	21.4
Others	33.4	91.7	-58.3

Table S7 Compositions of hole and electron in T₁ of 2 (optimized S₀ geometry in THF)

^a In the molecular orbitals, the atomic component is evaluated by the sum of the square of the LCAO coeffiients which belong to the corresponding atom; see experimental section in detail.

hole

electron

Fig. S26 NTO pairs for the first singlet excited state of 1 in the optimized S₀ geometry. The generation probabilities are 99.9 %.

electron

Fig. S27 NTO pairs for the first singlet excited state of 2 in the optimized S₀ geometry. The generation probabilities are 99.8 %.

percentage composition (%) ^a		
hole	electron	differences
31.9	1.00	30.9
15.7	5.38	10.3
17.2	1.46	15.8
3.80	0.22	3.57
2.81	0.075	2.74
39.5	6.66	32.8
28.6	92.3	-63.7
	hole 31.9 15.7 17.2 3.80 2.81 39.5 28.6	hole electron 31.9 1.00 15.7 5.38 17.2 1.46 3.80 0.22 2.81 0.075 39.5 6.66 28.6 92.3

Table S8 Compositions of hole and electron in S1 of 3 (optimized S0 geometry in THF)

^{*a*} In the molecular orbitals, the atomic component is evaluated by the sum of the square of the LCAO coefficients which belong to the corresponding atom; see experimental section in detail.

	percentage composition (%) ^a		
	hole	electron	differences
Cu	30.5	0.23	30.3
P1	18.8	3.89	14.9
P2	19.9	1.62	18.3
N1	1.21	0.26	1.18
N3	1.61	0.017	1.60
P and N (total)	41.5	6.02	35.5
others	28.0	93.8	-65.8

Table S9	Compositions	of hole and electron	$in S_1 \text{ of } 1$	(optimized S_0 g	eometry in THF)
	001110001010110				

	percentage composition (%) ^a		
	hole	electron	differences
Cu	33.1	0.18	33.0
P1	17.3	4.33	13.0
P2	18.2	2.51	15.7
N1	2.24	0.01	2.23
N3	2.68	0.00	2.68
P and N (total)	40.4	6.02	35.5
others	26.5	93.8	-67.3

Table S10 Compositions of hole and electron in S_1 of 2 (optimized S_0 geometry in THF)

^{*a*} In the molecular orbitals, the atomic component is evaluated by the sum of the square of the LCAO coefficients which belong to the corresponding atom; see experimental section in detail.

6. The angular distribution of light emission from OLEDs containing 1 – 3.

Fig. S28 The angular distribution of light emission from the device containing 1.

Fig. S29 The angular distribution of light emission from the device containing 2.

Fig. S30 The angular distribution of light emission from the device containing 3.

7. References

- W. J. Layton, K. Niedenzu, P. M. Niedenzu and S. Trofimenko, *Inorganic Chemistry*, 1985, 24, 1454-1457.
- A. Tsuboyama, K. Kuge, M. Furugori, S. Okada, M. Hoshino and K. Ueno, *Inorganic Chemistry*, 2007, 46, 1992-2001.