Supplementary Information

Inkjet-Printed Organic Thin Film Transistors Based on TIPS Pentacene with Insulating Polymer

Song Yun Cho,*^{*a*} Jung Min Ko,^{*ab*} Jongsun Lim, ^{*a*} Jun Young Lee, ^{*b*} and Changjin Lee*^{*a*}

Song Yun Cho and Jung Min Ko contributed equally to this work.

Additional Figures

Fig. S1. The output characteristics of the TIPS pentacene/APC TFTs fabricated using various TIPS pentacene/APC ratios in an inkjet-printing process: (a) 1:0, (b) 1:1, (c) 1:2, (d) 1:4, (e) 1:6, and (f) 1: 8.

Fig. S2. (a) XRD patterns and (b) intensity of (001) peak of inkjet-printed polymer/TIPS pentacene with respect to various TIPS pentacene/APC ratios.

Fig. S3. The output characteristics of the TIPS pentacene/APC TFTs depending on the TIPS pentacene/APC ink concentration: (a) 0.1, (b) 0.5, (c) 1.0, (d) 1.5, and (e) 2.0 wt%.

Fig. S4. The transfer and output characteristics of the TIPS pentacene/APC TFTs with a bottom-gate/bottom contact structure, showing a carrier mobility of $0.018 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$.

Fig. S5. The output characteristics of the TIPS pentacene/APC TFTs depending on the solvent mixtures: (a) toluene/chloroform, (b) toluene, (c) toluene/p-xylene, and (d) toluene/tetralin.

Fig. S6. The transfer and output characteristics of the (a) TIPS pentacene/PS and (b) TIPS pentacene/P α MS TFTs fabricated in an inkjet-printing process.

Fig. S7. (a) Photographs of the inkjet-printed TIPS pentacene/APC TFT array on the PET substrate and (b) the transfer and output characteristics of one single unit TFT in the array.