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ESI Figure 1: UV-Visible Spectra of DPG and DPS 

UV-vis spectra diphenylgermane (black) and diphenylsilane (red) with linear trend lines  
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ESI Figure 2: Electron-impact mass spectra for DPG and DPS at 70 eV.  The 70 eV EI-MS for 

diphenylsilane matches previously published results at this acceleration voltage.1 

1Silane, diphenyl-, <http://webbook.nist.gov/cgi/cbook.cgi?ID=C775122&Units=SI&Mask=200 

- Refs> (2011).  
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ESI Figure 3: Electron Ionization Mass Spectrometry: Collision Induced Decay Data 

Collision induced dissociation (CID) data acquired from liquid diphenylgermane (a) and 

diphenylsilane using 17 eV (b,c) ionization electrons. The most isotopically abundant molecular 

ion was chosen for DPG (230 amu) and DPS (184 amu).  CID indicates that these molecular ions 

both fragment by losing one neutral phenyl. 
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Modeling and Simulations 

Simulations of fields and current in the tip/liquid/substrate system are conducted using 

the Sentaurus Device Simulator ® from Synopsys. The AFM tip is very heavily Sb doped (1020 

cm-3) n-type Silicon with a radius of curvature equal to 15 nm capped by a conformal 2 nm layer 

of SiO2. The p-type silicon substrate is heavily boron doped (1019 cm-3) with a uniform 2 nm 

layer of SiO2. The tip and substrate is nearly in contact (3 Å). The surrounding region is filled 

with the precursor liquid, which is modeled as a semiconductor with very low ionic mobility on 

the order of 10-6 cm2/(V·s). We utilize a phonon-assisted tunneling model based on the work of 

Schenk et al, non-local tunneling model for negatively charged ions in the liquid, together with 

current continuity equations that are solved consistently with Poisson equation. The simulations 

are based on a 2D system with a depth of 20 nm chosen based on the lateral current distribution 

used on calculate total tip current. The parameter values employed for DPG/DPS are εDPG =  εDPS 

= 2.5, χDPG = 4.0 eV, χDPS = 4.0 eV,EgDPG = 4.2 eV, EgDPS = 4.3 eV. 

The primary mechanism for current flow through the insulating SiO2 layer of the tip and 

substrate is expected to be quantum mechanical tunneling. The electric field at the tip is very 

large (> 109 V/m), requiring the use of the non-local tunneling model, based on WKB tunneling 

probability: 

κ!,! r, ε = !
ℏ 2m! r E!,! r − ε Θ E!,! r − ε

κ!,! r, ε = !
ℏ
2m!(r) ε− E!,! r Θ ε− E!,! r

 

where mC is the conduction-band tunneling mass and mV is the valence-band tunneling mass, 

EC,ν and EV,ν are the conduction and valence bands energies. So the tunneling probability 

between positions l and u>l for a particle with energy 𝜀 can be written as: 
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Γ!!,! u, l, ε = T!!,! l, ε exp −2 κ!,!

!

!

r, ε dr T!!,! u, ε

Γ!!,! u, l, ε = T!!,! l, ε exp −2 κ!,!

!

!

r, ε dr T!!,! u, ε

 

which T!!,! l, ε  and T!!,! l, ε  are the interface transmission coefficients happened at 

conduction band and valence band. 

The DFT calculations are done using the Vienna Ab initio Simulation Package (VASP) 

with generalized-gradient approximation (GGA). The supercell size is 2.5nm x 2.5nm x 2.5nm 

with only one k-point sampling at Γ point. The INCAR file is as following: 

PREC = Accurate 

ISPIN = 2 

ISMEAR = 0 

SIGMA = 0.01 

LREAL = Auto 

ALGO = Fast 

IBRION = 1 

NELMIN = 4 

NSW = 500 

NELM = 160 

EDIFF = 1e-5 

EDIFFG = -0.01 

For calculations with E-field, the following lines are added to the INCAR file: 

EFIELD = -0.4 
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IDIPOL = 3 

LDIPOL = .TRUE. 
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