

Supporting Information

Figure S1: Collated XRD diffractograms of thin films deposited under different solvent (acetone, dioxane, ethyl ethanoate, ethanol, ethanoic acid, water, propanol and methanol) and temperature (500, 550 and 600°C) conditions from the AACVD of ⁿBuSnCl₃ and NH₄F in air. The labelled reference displays SnO₂ peaks, the aberrant SnO₍₁₀₁₎ peak is starred (*).

Figure S2: Collated XRD diffractograms of thin films deposited under different solvent (acetone, dioxane, ethyl ethanoate, ethanol, ethanoic acid, water, propanol and methanol) and temperature (500, 550 and 600°C) conditions from the AACVD of "BuSnCl3 and NH4F in nitrogen. The labelled reference displays SnO2 peaks, the aberrant SnO(101) peak is starred (*) and β -Sn peaks marked with black circles.

Figure S3: Collated XRD diffractograms of thin films deposited from acetone under different temperature and carrier gas conditions. The labelled reference displays SnO2 peaks and the aberrant SnO(101) peak is starred (*).

Figure S4: Collated XRD diffractograms of thin films deposited from dioxane under different temperature and carrier gas conditions. The labelled reference displays SnO2 peaks and the aberrant SnO(101) peak is starred (*).

Figure S5: Collated XRD diffractograms of thin films deposited from ethyl ethanoate under different temperature and carrier gas conditions. The labelled reference displays SnO₂ peaks and the aberrant SnO(101) peak is starred (*).

Figure S6: Collated XRD diffractograms of thin films deposited from ethanol under different temperature and carrier gas conditions. The labelled reference displays SnO2 peaks, the aberrant SnO(101) peak is starred (*) and β -Sn peaks marked with black circles.

N₂-600

N₂-550

Figure S7: Collated XRD diffractograms of thin films deposited from H₂O under different temperature and carrier gas conditions. The labelled reference displays SnO_2 peaks and the aberrant $SnO_{(101)}$ peak is starred (*).

Figure S8: Collated XRD diffractograms of thin films deposited from methanol under different temperature and carrier gas conditions. The labelled reference displays SnO2 peaks and the aberrant SnO(101) peak is starred (*).

Figure S9: WDX F:Sn Wt% values over the experimental temperature range

Figure S10: Fluorine 1s orbital XPS depth profile of an FTO film formed from propan-2-ol in N2 at $500^{\circ}C$

Figure S11: Fluorine 1s orbital XPS depth profile of an FTO film formed from propan-2-ol in N2 at $550^{\circ}C$

Figure S12: Fluorine 1s orbital XPS depth profile of an FTO film formed from propan-2-ol in N₂ at $600^{\circ}C$

Figure S13: Illustrative extrapolated ${\rm (ahv)}^2$ vs E/eV plot for ${\rm E_G}^{\rm opt}$ calculation

Figure S15: Compositional profile changes in an ionetched PrOH sample deposited at 500°C in air

Figure S14: Illustrative sub-bandgap In α vs E/eV plot for **E**_u calculation

Figure S16: Compositional profile changes in an ionetched PrOH sample deposited at 500°C in $N_{\rm 2}$

Figure S17: Transmittance-Reflectance profiles of air carrier gas-600°C condition for the various carrier solvents.

Figure S18: Transmittance-Reflectance profiles of N2 carrier gas-600°C condition for the various carrier solvents.