Supporting Information for:

Formation of Dynamic Metallo-Copolymers by Inkjet printing: Towards White–Emitting Materials.

Andreas Wild, Anke Teichler, Cheuk-Lam Ho, Xing-Zhu Wang, Hongmei Zhan, Florian Schlütter, Andreas Winter, Martin D. Hager, Wai-Yeung Wong, and Ulrich S. Schubert*

Figure S1. Absorption spectra of the wells a) A7 – A12; b) B8 – B12; c) C9 – C12 and d) D10 – D12, E11 – E12 and F12 (DMF, $c = 5 \times 10^{-6}$ M).

Figure S2. Absorption spectra of the wells a) A1 – A6; b) B1 – B5; c) C1 – C4 and d) D1 – D3, E1 – E2 and F1 (DMF, $c = 5 \times 10^{-6}$ M).

Figure S3. Optical profiler image of films A12, F12 and A7 inkjet-printed with a dot spacing of 90 μm using a 5 mg/mL solution of DMF/AcPh (9/1) and a substrate temperature of 50 °C.

Figure S4. Optical profiler image of films B9 – B11, C10, C11 and D11 inkjet-printed without (first row) and with (second row) one additional layer of solvent.

Figure S5. Emission spectra of films B9 – B11, C10, C11 and D11 inkjet-printed with or without solvent (film, $\lambda_{ex} = 365$ nm).

Table S1. CIE coordinates from films A7 – A12, B8 – B12, C9 – C12, D10 – D12, E11 – E12 and F12 (film, $\lambda_{ex} = 365$ nm).

well	composition P11/P2/P3	CIE coordinates	well	composition P11/P2/P3	CIE coordinates
		(x , y)			(x , y)
A7	0/0/100	0.565, 0.386	C9	0/40/60	0.495, 0.376
A8	20/0/80	0.472, 0.349	C10	20/40/40	0.412, 0.334
A9	40/0/60	0.368, 0.306	C11	40/40/20	0.385, 0.334
A10	60/0/40	0.342, 0.277	C12	60/40/0	0.265, 0.417
A11	80/0/20	0.312, 0.290	D10	0/60/40	0.477, 0.376
A12	100/0/0	0.237, 0.366	D11	20/60/20	0.420, 0.349
B8	0/20/80	0.554, 0.367	D12	40/60/0	0.279, 0.439
B9	20/20/60	0.417, 0.327	E11	0/80/20	0.446, 0.397
B10	40/20/40	0.360, 0.304	E12	20/80/0	0.289, 0.475
B11	60/20/20	0.348, 0.310	F12	0/100/0	0.302, 0.493
B12	80/20/0	0.247, 0.374			

Figure S6. Absorption spectra of the wells a) A12 – F12; b) A7 – A12; c) A7, B8, C9, D10, D11, F12 and d) B9 – B11, C10, C11, D11 (film).

Figure S7. Excitation spectra of A7, B8, C9, D10, E11 and F12 a) (film, $\lambda_{em} = 650$ nm); b) (film, $\lambda_{em} = 500$ nm).