Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (C) The Royal Society of Chemistry 2012

Electronic Supplementary Information

The Structural, Optical and Electrical Characterization of High-Performance, Low-Temperature and Solution-Processed Alkali Metal-Doped ZnO TFTs

By Si Yun Park, Kyongjun Kim, Keon-Hee Lim, Beom joon Kim, Jeong Ho Cho and Youn Sang Kim*

We modified equation of optical absorption coefficient as follows,^[1]

$$T_{ZnO/glass} = e^{-(\alpha_{ZnO}d_{ZnO})} \cdot e^{-(\alpha_{g} \cdot d_{g})}, \quad T_{g} = e^{-\alpha_{g} \cdot d_{g}}$$
$$T_{relativeZnO} = \frac{T_{ZnO/glass}}{T_{glass}} = e^{-\alpha_{ZnO}d_{ZnO}}$$
$$-\frac{1}{d} \ln T_{relativeZnO} \cong \alpha$$

We estimated the optical bandgap from the intersection of the linear extrapolated line with the horizontal axis,^[2]

$$(\alpha h\nu)^{n} = A(h\nu - E_{opt})$$
⁽¹⁾

The value of n in equation (1) was obtained the best straight line fit to the experimental data for n=2 when α was plotted against *hv*. The measured optical bandgap (E_{opt}) was defined as follows,

$$E_{opt} = E_g - \Delta E \tag{2}$$

The Burstein-Moss shift, ΔE , could be expressed as,

$$\Delta E = \frac{h^2 E_b}{8\pi^{\frac{2}{3}}}, \quad E_b = \frac{N^{\frac{2}{3}}}{m_e^*}$$
(3)

Thus, equation (2) could be written as follow.

$$E_{opt} = E_{g} + \frac{h^{3} N^{\frac{2}{3}}}{8m_{e}^{*} \pi^{\frac{2}{3}}}$$
(4)

N is carrier concentration. Assuming the effective mass m_e^* to be independent of doping concentration, we could determine the optical bandgap of pristine ZnO film and the average value of m_e^* from the UV transmittance plot.^[3] To calculate the optical bandgap, the linear data region of pristine ZnO film was selected. Generally, the band gap of intrinsic ZnO is ~ 3.3eV, however, the calculated optical bandgap of pristine ZnO film which we selected was 3.24eV. Under the same linear data region (3.5eV~3.64eV) of $(\alpha hv)^2 vs$. photon energy plot, the E_{opt} of Li-doped ZnO films (1mol%~ 15mol%) was calculated respectively.

Figure S1. Output curves and transfer curves of ZnO TFTs. (a) and (b) pristine ZnO. (c) and (d) Li- ZnO (Li 1mol%). (e) and (f) Li-ZnO (Li 10mol%). (g) and (h) Li-ZnO (Li 15mol%). The gate voltage was varied between 0 V and 60 V in steps of 12 V. The channel length and width were 50 and 1000 μm, respectively.

Figure S2. The box chart of optical band gap vs. Li doping concentration.

Figure S3. The average field effect mobility of Li-doped ZnO TFTs as one run at 300°C. (a) pristine ZnO. (b) Li-doped ZnO (1mol%). (c) Li-doped ZnO (10mol%). (d) Li-doped ZnO (15mol%).

Figure S4. The TGA data of various alkali metal-doped ZnO films.

Figrue S5. XPS spectra of alkali metals doped ZnO films. (a) Li peaks at 55.7eV in Li-doped ZnO films (10 mol%). (b) Na peaks at 55.7eV in Na-doped ZnO films (1 mol%).

Figure S6. XPS spectra of Li 1s for Li-doped ZnO film (10 mol%).

Figure S7. TOF-SIMS results of (a) pristine and (b) Li-doped ZnO (Li 10 mol%) film. Etching rate and analysis area was 0.4 Å/s and 100 x 100 μ m, respectively.

Figure S8. EDS results of (a) pristine and (b) Li-doped ZnO (Li 1 mol%) films. (c) Li-doped ZnO (Li 10 mol%) films. (d) Li-doped ZnO (Li 15 mol%) films. Note that nitrogen doping was not observed in the ZnO films. All films were annealed at 300 °C for 1 hour.

Reference

- 1. K. H. Kim, K. C. Park and D. Y. Ma, J. Appl. Phys., 1997, 81, 7764-7772.
- 2. A. Sarkar, S. Ghosh, S. Chaudhuri and A. K. Pal, Thin Solid Films., 1991, 204, 255-264.
- 3. S. Karamat, S. Mahmood, J. J. Lin, Z. Y. Pan, P. Lee, T. L. Tan, S. V. Springham, R. V. Ramanujan and R. S. Rawat, Appl. Surf. Sci., 2008, **254**, 7285-7289.