Supporting Information

An Effective Oxide Shell-protected Surface-enhanced Raman

Scattering (SERS) Substrates: the Easy Route to Ag@Ag_xO- Silicon

Nanowire Films via Surface Doping

Fan Liao¹, Liang Cheng¹, Jing Li¹, Mingwang Shao^{1,*}, Zhenghua Wang², Shuit-Tong Lee¹

¹Institute of Functional Nano and Soft Materials (FUNSOM) & Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China

²Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China.

1. SERS spectrum on Ag@Ag_xO-SiNW substrate of 1×10^{-7} M R6G solution and Raman

spectrum of 0.1 M R6G solution

Figure S5. (a) SERS spectrum on Ag@Ag_xO-SiNW substrate of 1×10^{-7} M R6G solution; and (b) the Raman spectrum of 0.1 M R6G solution. The inset is the side view of the substrate.

2. The calculation of EF

 $EF = \frac{I_{sers}}{I_0} \times \frac{N_0}{N_{sers}}$ is the most widely used definition for the average SERS EF. I_0 and I_{sers} are the

peak intensity of regular Raman measurement with 0.1 M R6G methanol solution on ITO glass and SERS measurement with 1×10^{-7} M R6G methanol solution on Ag@Ag_xO-SiNW substrate; and N_0 is the average number of molecules in the scattering volume for the Raman measurement, and N_{sers} is the average number of adsorbed molecules in the scattering volume for the SERS experiments.

 N_0 was derived by considering the irradiated R6G solution area $A_{laser} (\pi r_{laser}^2$ with $r_{laser} = 0.61\lambda_{laser}/NA$), the laser spot depth of focus $(2\lambda / NA^2)$, and its concentration C_0 . N_A is Avogadro constant.

$$A_{laser} = \pi \left(\frac{0.61\lambda_{laser}}{NA}\right)^2 = \pi \left(\frac{0.61 \times 633 \times 10^8}{0.9}\right)^2 = 5.78 \times 10^{-11} dm^2$$
$$N_0 = A_{laser} \times (2\lambda/NA^2)C_{sers} \times N_A = 5.44 \times 10^7$$

Sample for SERS measurement was prepared by the addition of 20 μ l of 1 × 10⁻⁷ M R6G methanol solution onto the given substrate, and dried in room temperature. After the solvent evaporated, the solution formed a 5 mm diameter circular liquid deposit and the probe molecules were uniformly permeated into Ag@Ag_xO-SiNW with thickness of 4 μ m (inseted in figure S5). So the density of R6G molecules in the Ag@Ag_xO-SiNW was1.533×10¹⁹,

$$\left(\rho = \frac{20 \times 10^{-6} \times 10^{-7} \times 6.02 \times 10^{23}}{\pi (\frac{0.05}{2})^2 \times 4 \times 10^{-5}} = 1.533 \times 10^{19} / dm^3\right)$$

Owing to the chemical first layer enhancement, the SERS effect is distance-dependent and the SERS signal from molecules on the second monolayer is usually reduced and can be ignored [19]. Assuming laser only penetrate SiNWs surface layer and the diameter of SiNWs is 75 nm. And the R6G molecules on the SiNWs' surface was calculated as $1.129 \times 10^{10} (1.533 \times 10^{19} \times \frac{0.075}{2} \times 10^{-5} \times \pi (\frac{0.05}{2})^2 = 1.129 \times 10^{10} / dm^3)$ $N_{sers} = \frac{A_{tuner}}{\pi (\frac{0.05}{2})^2} \times 1.129 \times 10^{10} = 332$ Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is C The Royal Society of Chemistry 2012

$$EF = \frac{I_{sers}}{I_0} \times \frac{N_0}{N_{sers}} = \frac{32970}{1284} \times \frac{5.44 \times 10^7}{332} = 4.21 \times 10^6$$