Supplementary Information for

Nanoscale Luminescence Characteristics of CdSe/ZnS Quantum Dots Hybridized with Organic and Metal Nanowires: Energy Transfer Effect

Yong-baek Lee ${ }^{a}$, Sungyeoun Park ${ }^{b}$, Sunmi Lee ${ }^{a}$, Jeongyong Kim ${ }^{c}$, Kwang-Sup Lee ${ }^{b^{*}}$, and Jinsoo Joo ${ }^{a^{*}}$
${ }^{\text {a }}$ Department of Physics, Korea University, Seoul 136-713, Republic of Korea
${ }^{\mathrm{b}}$ Department of Advanced Materials, Hannam University, Daejeon 305-811, Republic of Korea
${ }^{\text {c Department of Physics, University of Incheon, Incheon 406-772, Republic of Korea }}$

Figure S1a shows Fourier transform-infrared (FT-IR) spectra of the CdSe/ZnS QDs functionalized with OA, Cu NWs, and QD/Cu NWs. The IR characteristic peaks of the QDs functionalized with OA were observed at 2852 and $2922 \mathrm{~cm}^{-1}$, corresponding to the symmetric and anti-symmetric methylene stretching modes of the OA in the functional group, respectively. When the functionalized QDs were attached to the surface of Cu NW , the same IR peaks due to the OA groups could be observed from the QD/Cu hybrid NWs, as shown in Fig. S1a. Figure S1b shows FT-IR spectra of the CdSe/ZnS QDs functionalized with OH, P3HT NWs, and QD/P3HT NWs. The IR characteristic peaks of the functionalized QDs with OH were observed at $1050 \sim 1200 \mathrm{~cm}^{-1}$, which originated from 11-mercapto-1-undecanol in the functional group. For the QD/P3HT hybrid NWs, the IR characteristic peaks were also detected at the same wave number ($1050 \sim 1200 \mathrm{~cm}^{-1}$), as shown in Fig. S1b. From the comparison with FT-IR spectra of the QDs and hybrid NWs, we confirmed the attachment of the functionalized QDs on the surface of the NWs.

Figure S1. Comparison of FT-IR spectra of (a) the CdSe/ZnS QDs functionalized with OA, Cu NWs , and QD/Cu NWs and of (b) the CdSe/ZnS QDs functionalized with OH, P3HT NWs, and QD/P3HT NWs.

Figures S2a and S2b show high-resolution transmission electron microscope (HR-TEM) images and the analysis of electron dispersive spectroscopy (EDS) patterns for functionalized CdSe/ZnS QDs and Cu NWs, respectively. The constituent atoms of the QDs including Cd, Se, Zn, and S were detected, as shown in the EDS pattern of the CdSe/ZnS QDs (top-right of Figure S2a), and the thickness of ZnS shell was ~1.5 nm (bottom-right in Figure S2a). From the EDS analysis of the Cu NW , we estimated the thickness of the oxidation layer of the Cu NW to be about 10 nm (bottom-right in Figure S2b).

From the time-resolve PL decay curves in Fig. 4, the exciton lifetime (τ) can be estimated by multi-exponential fitting;

$$
\begin{align*}
& \mathrm{y}=\sum_{\mathrm{i}} \mathrm{~A}_{\mathrm{i}} \mathrm{e}^{-\left(\frac{\mathrm{t}}{\tau_{\mathrm{i}}}\right)} \tag{1}\\
& \tau_{\mathrm{avg}}=\frac{\sum_{\mathrm{i}} \mathrm{~A}_{\mathrm{i}} \tau_{\mathrm{i}}^{2}}{\sum_{\mathrm{i}} \mathrm{~A}_{\mathrm{i}} \tau_{\mathrm{i}}} . \tag{2}
\end{align*}
$$

Here, A_{i} represents the absolute amplitude and τ_{I} is the characteristic lifetimes of exciton component. From the extracted components of τ 's, the intensity-weighted average exciton lifetime ($\tau_{\text {avg }}$'s) of the P3HT NWs, CdSe/ZnS QDs, and the hybrid NWs were estimated as listed in Table S1.

Figure S2. HR-TEM images and EDS results of (a) the functionalized CdSe/ZnS QDs and (b) Cu NWs.

Table S1. Absolute amplitudes and exciton lifetimes of P3HT NW, CdSe/ZnS QDs, QD/P3HT NW, and QD/Cu NW.

Amplitude and τ

	P3HT NW	QDs (OH)	QD/P3HT NW	QDs (OA) full detection	QD/Cu NW
Amp. 1 (A_{1})	1774.48	3172	698.98	3007.88	111.7
$\tau_{1}(\mathrm{~ns})$	0.15	1.88	2.05	3.55	7.84
Amp. 2 (A_{2})	1761.75	3315.79	7067.41	660.67	1537.34
τ_{2} (ns)	0.48	16.83	0.41	93.28	0.48
Amp. 3 $\left(\mathrm{A}_{3}\right)$		1200.37	2412.9	4818.48	485.56
τ_{3} (ns)		50.70	0.03	19.77	2.55
Amp. 4 (A_{4})			249.17		
$\tau_{4}(\mathrm{~ns})$			10.78		
$\tau_{\text {avg }}$ (ns)	0.40	32.91	4.67	45.77	3.64

