Supporting Information

Role of anions in Au complex for doping and degradation of graphene

Ki Chang Kwon^a, Buem Joon Kim,^{b,c}, Jong-Lam Lee^{b,c,*}, and Soo Young Kim^{a,*}

^a School of Chemical Engineering and Materials Science, Chung-Ang University

221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Republic of Korea

^b Department of Materials Science and Engineering, Pohang University of Science and Technology

(POSTECH), Pohang, Gyeongbuk 790-784, Republic of Korea

^c Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 790-784, Republic of Korea

CORRESPONDING AUTHOR FOOTNOTE

*E-mail: jllee@postech.ac.kr, Tel: 82-54-279-2152, Fax:82-54-279-2399

sooyoungkim@cau.ac.kr, Tel: 82-2-820-5875, Fax: 82-2-824-3495

Figure SI1. a) The photographic image of pristine graphene on a glass substrate. b) The optical microscopic image of transferred pristine graphene on SiO_2 wafer. c) The thickness profile and AFM image of pristine graphene on SiO_2 wafer. The thickness of the few-layer graphene was 0.838 nm, indicating that 2 or 3 layers of graphene were synthesized.

Figure SI2. The Raman spectroscopy of transferred pristine graphene sheets as a function of growth temperature. The gas ratio of CH_4 of H_2 was fixed at 6:1. The G peak around 1550 cm⁻¹ and 2D peak around 2700 cm⁻¹ was due to the in-plane bond-stretching motion of the sp²-bonded carbon atoms and the monolayer graphene, respectively. The D peak around 1360 cm⁻¹ is absent in perfect graphite and indicates the presence of disorders and defects. The 950°C growth graphene had the highest I_G/I_D value and the acceptable value of I_{2D}/I_D for few-layer graphene sheets indicating that this was the best condition for few-layer graphene growth.

Figure SI3. The wide scan of the Au complex doped graphene sheets. Each Au complex doped graphene sheet had anions peak for Cl 2p, Br 3d, S 2p. The Au 4f peak indicated the presence of gold ions on the graphene sheets.

Figure SI4. The Au 4f peak separtion was investigated. In the case of the Au complex doped graphene, the AuCl₃ had the largest ion peak, which was related to the degree of the decrease in the sheet resistance. But annealed AuCl₃ doped graphene sheet contained no gold ion peaks, indicating that they were completely degraded by thermal annealing.

Figure SI5. The UPS speectra shows the secondary electron threshold energy differences. The AuBr₃ doped graphene sheets had the lowest secondary electron threshold energy value, indicating that they have the highest work function value. But the annealed graphene sheets had a larger secondary electron threshold energy value than that of each doped graphene sheets. The AuCl₃ doped graphene had the largest variance among the Au complex doped graphene sheets.