Supporting Information

Enhanced photoluminescence, Raman spectra and field-emission behavior of indium-doped ZnO nanostructures

Khalid Mahmood, Seung Bin Park^{*} and Hyung Jin Sung

Department of Chemical & Biomolecular Engineering, and Department of Mechanical Engineering

Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea

*Corresponding author. Tel:+82-42-350-3298; Fax: +82-42-350-3910

E-mail address: SeungBinPark@kaist.ac.kr

Figure S1. EDS spectrum for other three In-doped ZnO nanostructures: (a) nanotripods, (b) nanorods, and (c) nanodisks, respectively.

Figure S2. EDS spectrum for other three pure ZnO nanostructures: (a) nanotripods, (b) nanorods, and (c) nanodisks, respectively.

Figure S3. (a) XRD patterns of four various pure ZnO samples, and (b) the expanded spectra around 3 strongest lines showing that no peak shift was observed when compared with the standard peak position of pure ZnO.

Figure S4. (a) J-E plot comparison of other three pure ZnO nanostructures; (b) FN plots of the corresponding J-E curves; (c) emission current density as a function of time demonstrates the field-emission stability.