Supporting Information

Water Soluble Pentacene

Chandrani Pramanik,^a Yushu Li,^a Anup Singh,^b Weimin Lin,^a Jennifer L. Hodgson,^a Jonathan B. Briggs,^a Simka Ellis,^a Peter Müller,^c Nicol E. McGruer^b and Glen P. Miller^{*a}

^a Department of Chemistry & Materials Science Program, University of New Hampshire, Durham, NH 03824, USA
^b Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
^c Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

General Experimental Methods

Reactions were performed in standard glassware except where noted. The following reagents were used as purchased without further purification: zinc iodide (Aldrich), 3-thiopropanoic acid (Alfa Aesar), chloranil (Aldrich), potassium carbonate (J. T. Baker), ethanol (Pharmco-AAPER), methanol (MeOH, Pharmco-AAPER), chloroform (CHCl₃, Pharmco-AAPER), dichloromethane (DCM, Pharmco-AAPER), benzene (Sigma-Aldrich), hexanes (Pharmco-AAPER), acetone (Pharmco-AAPER), buffer solution ($K_2CO_3-K_3BO_3-KOH$, pH=10, Fisher Scientfic), dimethylsulfoxide (DMSO, Alfa Aesar). All NMR solvents including acetone- d_6 , methanol- d_4 , D₂O and acetic acid- d_4 were purchased from Cambridge Isotope Laboratories.

¹H NMR Spectra

¹H NMR spectra were obtained on a Varian Mercury Plus 400 FT-NMR operating at 399.768 MHz or a Varian INOVA 500 FT-NMR operating at 499.763 MHz. All chemical shift ($\delta_{\rm H}$) values are reported in parts per million (ppm) relative to residual solvent protons unless otherwise noted.

¹³C NMR Spectra

¹³C NMR spectra were obtained on a Varian Mercury Plus 400 FT-NMR operating at 100.522 MHz or a Varian INOVA 500 FT-NMR operating at 125.666 MHz. All chemical shift (δ_c) values are reported in parts per million (ppm) relative to residual solvent signal or K₂CO₃ (160.64 ppm in D₂O)¹ unless otherwise noted.

¹ Y. Kim, J. Choi, S. Nam, S. Jeong and Y. Yoon, *Energy Fuels*, 2012, 26, 1449.

Mass Spectrometry

Matrix assisted laser desorption ionization (MALDI-TOF-MS, S_8 as matrix) and laser desorption ionization (LDI-TOF-MS) mass spectra was acquired on a Shimadzu Kratos Axima-CFR mass spectrometer in reflectron mode. Electrospray ionization high resolution mass spectra were acquired at the Notre Dame Mass Spectrometry & Proteomics Facility in Notre Dame, Indiana.

Solid State FTIR Spectroscopy

Infrared spectra of solid samples were acquired using a Thermo Scientific spectrometer (NICOLET iS10) with diamond ATR accessory (Smart iTR).

Thermogravimetric Analysis

Thermogravimetric analysis was completed using a TA Instruments TGA Q5000 instrument. Samples weighing between 5 - 15 mg were heated from 35 °C - 550 °C with the ramp rate set to 5 °C/min.

UV-Vis Spectroscopy

UV-visible spectra were obtained on a Nicolet Evolution 300 spectrometer using 1 cm quartz cells. In order to obtain the decay profile of WSP **4** in solution with exposure to light and air, dilute solutions $(2.0 \times 10^{-4} \text{ M})$ of WSP **4** were prepared in aqueous buffer (pH = 10). The cells were protected from light until each experiment began, at which point an initial spectrum was recorded. The cells were placed in a tank containing water to maintain a constant temperature (25 °C) and irradiated with an overhead 15 watt, 120 volt incandescent light bulb. The solutions were repeatedly scanned at prescribed intervals until less than 5% of WSP **4** remained. Because WSP **4**

is slow to decay, water was added periodically to offset evaporation and maintain a constant

concentration.

Computational Modeling

Gaussian archive entries

NOTE: All species had zero imaginary frequencies, as determined from frequency calculations at the B3LYP/6-31G(d) level

Conformer A of Table 1

1\1\GINC-MILLER4\FOpt\RB3LYP\6-31G(d)\C28H20K2O4S2\JHODGSON\04-Aug-2012\0\\# rb3lyp/6-31G* opt freq=noraman\\wsp cs8s 6drb3\\0,1\C,-0.071809 4271,-1.4387966476,-1.1649616678\C,0.0718094271,1.4387966476,-1.164961 6678\S,-0.188725594,-3.22748793,-1.3008103753\S,0.188725594,3.22748793 ,-1.3008103753\C,0.510638732,-3.907097033,0.2828746749\C,-0.510638732, 3.907097033,0.2828746749\C,-0.4856960856,-4.0120005641,1.435417819\C,0 .4856960856,4.0120005641,1.435417819\C,-0.9103714609,-2.647310035,2.00 60798369\C.0.9103714609.2.647310035.2.0060798369\O.-0.0183492998.1.787 7973565,2.1773640895\O,0.0183492998,-1.7877973565,2.1773640895\H,0.871 1032472,-4.898265894,-0.0135415215\H,-0.8711032472,4.898265894,-0.0135 415215\H,0.0026979592,-4.5743605436,2.2461171371\H,-0.0026979592,4.574 3605436,2.2461171371\C,1.2647696252,0.6684781519,-1.1318132963\C,-1.26 47696252,-0.6684781519,-1.1318132963\C,1.1907294355,-0.7926078741,-1.2 057887353\C,-1.1907294355,0.7926078741,-1.2057887353\K,1.9380542274,-0 .1439072887,2.1284363722\K,-1.9380542274,0.1439072887,2.1284363722\H,1 .3714055486,-3.3026480293,0.5739900715\H,-1.3714055486,3.3026480293,0. 5739900715\H,-1.376257841,-4.5718810951,1.1378730751\H,1.376257841,4.5 718810951,1.1378730751\C,2.5464801444,1.266197119,-1.0236110559\C,-2.5 464801444,-1.266197119,-1.0236110559\C,2.4053972854,-1.5188590435,-1.2 855829552\C,-2.4053972854,1.5188590435,-1.2855829552\O,2.1251095302,2. 4628022966,2.2525113107\O,-2.1251095302,-2.4628022966,2.2525113107\H,2 .3534739048,-2.5924266897,-1.4284946962\H,-2.3534739048,2.5924266897,-1.4284946962\H.-2.60332597,-2.3419007363,-0.9112531226\H.2.60332597,2. 3419007363,-0.9112531226\C,3.7236278891,0.5275294439,-1.0407610578\C,-3.7236278891,-0.5275294439,-1.0407610578\C,3.6530509903,-0.9103688726, -1.2101049711\C,-3.6530509903,0.9103688726,-1.2101049711\C,4.87894496, -1.6547118708,-1.2779424662\C,-4.87894496,1.6547118708,-1.2779424662\H ,4.8247911972,-2.7310235019,-1.4232869545\H,-4.8247911972,2.7310235019 .-1.4232869545\C,5.0142281902,1.1440232939.-0.9122620482\C,-5.01422819 02,-1.1440232939,-0.9122620482\H,-5.0599070777,-2.220755974,-0.7713435 944\H,5.0599070777,2.220755974,-0.7713435944\C,6.1549276046,0.39432099

 $\label{eq:second} \begin{array}{l} 48,-0.9702482901\C,-6.1549276046,-0.3943209948,-0.9702482901\C,6.08583\\ 86688,-1.0245834076,-1.1616313171\C,-6.0858386688,1.0245834076,-1.1616\\ 313171\H,7.0074729856,-1.5976958276,-1.2150375378\H,-7.0074729856,1.59\\ 76958276,-1.2150375378\H,-7.1270166392,-0.8704237433,-0.8769057243\H,7\\.1270166392,0.8704237433,-0.8769057243\Version=AM64L-G03RevE.01\State\\ =1-A\HF=-3376.3476202\RMSD=6.801e-09\RMSF=1.075e-05\Thermal=0\Dipole=\\ 0,0,0.3560659\PG=C02\[X(C28H20K2O4S2)]\@ \end{array}$

Conformer B of Table 1

1\1\GINC-MILLER5\F0pt\RB3LYP\6-31G(d)\C28H20K2O4S2\JH0DGSON\27-Jul-2012\0\\# rb3lyp/6-31G* opt freq=noraman\\wsp cs1s 6drb3 $\0,1\C,-0.281574$ 6973,-1.1536732803,0.8147681783\C,0.2815746973,1.1536732803,-0.8147681 783\\$,-0.6168778588,-2.5647968423,1.8769185276\\$,0.6168778588,2.564796 8423,-1.8769185276\C,-0.7107120154,-4.0047497829,0.6930787775\C,0.7107 120154,4.0047497829,-0.6930787775\H,-0.017925939,-3.811407655,-0.12773 36168\H,0.017925939,3.811407655,0.1277336168\H,-0.3421338689,-4.849288 4232,1.2853136008\H,0.3421338689,4.8492884232,-1.2853136008\C,-1.28213 28128,-0.1680301686,0.6141240482\C,1.2821328128,0.1680301686,-0.614124 0482\C,-1.0003548451,0.9961709528,-0.2273493462\C,1.0003548451,-0.9961 709528,0.2273493462\H,1.8489425211,-2.7780616429,1.0939437175\H,-1.848 9425211,2.7780616429,-1.0939437175\O,-1.6958780594,-2.7315339552,-1.64 27801521\O.1.6958780594,2.7315339552,1.6427801521\C,-2.5787562821,-0.2 885478173,1.1753820743\C,2.5787562821,0.2885478173,-1.1753820743\C,-2. 0466294405,1.9287341922,-0.449580304\C,2.0466294405,-1.9287341922,0.44 9580304\C,-2.1073941103,-4.2739004587,0.1418099441\C,2.1073941103,4.27 39004587,-0.1418099441\C,-2.5762527718,-3.1962856741,-0.8572073459\C,2 .5762527718,3.1962856741,0.8572073459\H,-2.0709925838,-5.2322696158,-0 .3987693818\H,2.0709925838,5.2322696158,0.3987693818\H,-2.7983617195,-1.1659598214,1.7710833313\H,2.7983617195,1.1659598214,-1.7710833313\H, -2.8448888245,-4.3794453462,0.9425872048\H,2.8448888245,4.3794453462,-0.9425872048\C,-3.3103916914,1.7948911373,0.1172634342\C,3.3103916914, -1.7948911373,-0.1172634342\C,-3.5835964947,0.6476940613,0.9603183512\ C,3.5835964947,-0.6476940613,-0.9603183512\K,-3.2122818259,-0.72120903 2,-2.1368813225\K,3.2122818259,0.721209032,2.1368813225\O,-3.789263490 7,-2.8471524164,-0.8120841627\0,3.7892634907,2.8471524164,0.8120841627 \C,-4.3654503054,2.7417254519,-0.1168763359\C,4.3654503054,-2.74172545 19.0.1168763359\C.-4.8989446757.0.4988995896.1.5171821489\C.4.89894467 57,-0.4988995896,-1.5171821489\H,4.1557192277,-3.6091072163,0.73863998 08\H,-4.1557192277,3.6091072163,-0.7386399808\C,-5.6006445034,2.562500 6064,0.4397800081\C,5.6006445034,-2.5625006064,-0.4397800081\C,-5.8730 827716,1.42328271,1.266004547\C,5.8730827716,-1.42328271,-1.266004547\ H,-5.1003180366,-0.3698718018,2.1380619352\H,5.1003180366,0.3698718018 .-2.1380619352\H.6.389031993.-3.2887305967.-0.2613639868\H.-6.38903199 3,3.2887305967,0.2613639868\H,-6.8645987497,1.3020382794,1.6928724876\ H,6.8645987497,-1.3020382794,-1.6928724876\\Version=AM64L-G03RevE.01\S

 $tate=1-AG\HF=-3376.3034965\RMSD=6.157e-09\RMSF=7.015e-06\Thermal=0.\Dipole=0.,0.,0.\PG=CI [X(C28H20K2O4S2)]\@$

Conformer C of Table 1

1\1\GINC-MILLER4\FOpt\RB3LYP\6-31G(d)\C28H20K2O4S2\JHODGSON\16-Aug-2012\0\\# rb3lyp/6-31G* opt freq=noraman\\wsp_cs3s_6drb3\\0,1\C,-0.599744 382.-2.7883867307.-0.0343363925\C.0.599744382.2.7883867307.0.034336392 5\C,-0.2678565763,-1.4095172411,-0.0293631374\C,0.2678565763,1.4095172 411,0.0293631374\C,-1.9058769883,-3.2468583512,-0.1420579407\C,1.90587 69883,3.2468583512,0.1420579407\C,-1.3582167501,-0.4376616565,-0.11224 47194\C,1.3582167501,0.4376616565,0.1122447194\C,1.0709397536,-0.95125 71021,0.0724073487\C,-1.0709397536,0.9512571021,-0.0724073487\C,-2.236 2856288,-4.6437893562,-0.1400495586\C,2.2362856288,4.6437893562,0.1400 495586\C,-2.9788387696,-2.2843879949,-0.2697978267\C,2.9788387696,2.28 43879949,0.2697978267\C,-2.6821034287,-0.9269947703,-0.2387025682\C,2. 6821034287,0.9269947703,0.2387025682\C,-3.532778149,-5.0549358963,-0.2 724885072\C,3.532778149,5.0549358963,0.2724885072\C,-3.1843498887,2.09 0201011,-1.6933102877\C,3.1843498887,-2.090201011,1.6933102877\C,-4.32 54892776,-2.7591817925,-0.4306547014\C,4.3254892776,2.7591817925,0.430 6547014\C,-4.5908223201,-4.1000604186,-0.4282752312\C,4.5908223201,4.1 000604186.0.4282752312\C.-4.607888605.2.6583833436.-1.6403997943\C.4.6 07888605,-2.6583833436,1.6403997943\C,-5.4382841906,1.9365784915,-0.55 89412341\C,5.4382841906,-1.9365784915,0.5589412341\S,-2.4079406293,2.1 537862478,0.003488906\S,2.4079406293,-2.1537862478,-0.003488906\O,5.88 84631537,-2.6323411455,-0.3906907667\0,-5.8884631537,2.6323411455,0.39 06907667\0,5.5039348699,-0.6688803823,0.6420121884\0,-5.5039348699,0.6 688803823,-0.6420121884\K,-5.1879830572,0.7002784935,1.9168070046\K,5. 1879830572,-0.7002784935,-1.9168070046\H,-0.2054143245,3.5094356896,-0 .0497401342\H.0.2054143245,-3.5094356896,0.0497401342\H.1.4310999167,5 .3672515828,0.0367419233\H,-1.4310999167,-5.3672515828,-0.0367419233\H ,2.5458815368,-2.6603051157,2.3737232809\H,-2.5458815368,2.6603051157, -2.3737232809\H.-3.5069167812.-0.2319058069.-0.3572733242\H.3.50691678 12,0.2319058069,0.3572733242\H,3.7713307397,6.1152648284,0.2727737049\ H.-3.7713307397.-6.1152648284.-0.2727737049\H.-3.2111839545.1.04775871 72,-2.0124798443\H,3.2111839545,-1.0477587172,2.0124798443\H,-4.600780 0212,3.7321691018,-1.4331356416\H,4.6007800212,-3.7321691018,1.4331356 416\H,-5.112847882,-2.0233207935,-0.5794143899\H,5.112847882,2.0233207 935.0.5794143899\H.-5.6100005763.-4.455198036.-0.5568588547\H.5.610000 5763,4.455198036,0.5568588547\H,-5.0617345903,2.4996730749,-2.62708399 03\H,5.0617345903,-2.4996730749,2.6270839903\\Version=AM64L-G03RevE.01 \State=1-AG\HF=-3376.292124\RMSD=6.278e-09\RMSF=2.156e-05\Thermal=0.\D ipole=0..0..0.\PG=CI [X(C28H20K2O4S2)]\\@

Conformer D of Table 1

1\1\GINC-MILLER4\FOpt\RB3LYP\6-31G(d)\C28H20K2O4S2\JHODGSON\17-Aug-2012\0\\# rb3lyp/6-31G* opt freq=noraman\\wsp_cs6s_6drb3\\0,1\C,-0.403699 3946,5.0831488207,-0.7268292573\C,0.4036993946,-5.0831488207,0.7268292 573\C,-0.4069882527,1.3135161784,-0.4025965966\C,0.4069882527,-1.31351 61784,0.4025965966\C,-0.0395383289,3.7467504556,-0.3494600825\C,0.0395 383289,-3.7467504556,0.3494600825\C,0.3208758547,6.1565698431,-0.29227 6481\C,-0.3208758547,-6.1565698431,0.292276481\C,-0.7596868586,2.63668 79623,-0.7675360372\C,0.7596868586,-2.6366879623,0.7675360372\C,0.7668 973755,1.1223141463,0.4489453547\C,-0.7668973755,-1.1223141463,-0.4489 453547\C,1.1170081979,3.5580357714,0.5017276101\C,-1.1170081979,-3.558 0357714,-0.5017276101\C,1.8460944135,4.7158345631,0.9360478516\C,-1.84 60944135,-4.7158345631,-0.9360478516\C,1.4630641592,5.969960238,0.5531 472094\C,-1.4630641592,-5.969960238,-0.5531472094\C,1.4807695309,2.270 8870401,0.8714019088\C,-1.4807695309,-2.2708870401,-0.8714019088\C,-1. 1553200786,0.1872387219,-0.8287794639\C,1.1553200786,-0.1872387219,0.8 287794639\S,2.5986447929,-0.4221352796,1.8815897325\S,-2.5986447929,0. 4221352796,-1.8815897325\C,3.959924906,-0.3444693025,0.6234710466\C,-3 .959924906,0.3444693025,-0.6234710466\C,5.3074669588,-0.506032542,1.31 90064354\C,-5.3074669588,0.506032542,-1.3190064354\C,6.5048836394,-0.4 217528544,0.3521168351\C,-6.5048836394,0.4217528544,-0.3521168351\O,7. 6502647898,-0.6309242914,0.8516437191\0,-7.6502647898,0.6309242914,-0. 8516437191\0,-6.2711546307,0.1455220275,0.8630409112\0,6.2711546307,-0 .1455220275,-0.8630409112\K,-8.7351971567,0.2715031382,1.4014016225\K, 8.7351971567,-0.2715031382,-1.4014016225\H,-3.8020459846,1.1380847357, 0.1105865108\H,3.8020459846,-1.1380847357,-0.1105865108\H,2.3360959648 ,2.1306075537,1.5230481015\H,-2.3360959648,-2.1306075537,-1.5230481015 \H,1.6263458399,-2.7767563168,1.4037077191\H,-1.6263458399,2.776756316 8,-1.4037077191\H,2.7121230653,4.5703891176,1.577506159\H,-2.712123065 3,-4.5703891176,-1.577506159\H,1.2713751216,-5.2202954276,1.3678358298 \H,-1.2713751216,5.2202954276,-1.3678358298\H,2.0234441613,6.838951475 2,0.8880254933\H,-2.0234441613,-6.8389514752,-0.8880254933\H,-0.035558 8382,-7.1636729697,0.5848666351\H,0.0355588382,7.1636729697,-0.5848666 351\H,3.9066585454,0.6129700058,0.1010909693\H,-3.9066585454,-0.612970 0058,-0.1010909693\H,5.4464538765,0.2672601678,2.0859586181\H,-5.44645 38765,-0.2672601678,-2.0859586181\H,5.3694359644,-1.4654260933,1.84686 99453\H,-5.3694359644,1.4654260933,-1.8468699453\\Version=AM64L-G03Rev E.01\State=1-AG\HF=-3376.2833812\RMSD=9.369e-09\RMSF=3.381e-06\Thermal =0.\Dipole=0.,0.,0.\PG=CI [X(C28H20K2O4S2)]\\@

Conformer E of Table 1

1\1\GINC-MILLER4\FOpt\RB3LYP\6-31G(d)\C28H20K2O4S2\JHODGSON\16-Aug-2012\0\\# rb3lyp/6-31G* opt freq=noraman\\wsp_cs5s_6drb3\\0,1\C,0.7339142 084,-3.6473191261,-0.5680508722\C,-0.7339142084,3.6473191261,0.5680508 722\C,-0.1873560858,-3.7194513794,0.5466830289\C,0.1873560858,3.719451 3794,-0.5466830289\C,-0.5329109522,-5.0108008067,1.0698492974\C,0.5329 109522,5.0108008067,-1.0698492974\C,-0.0081368719,-6.1497653089,0.5281 824277\C,0.0081368719,6.1497653089,-0.5281824277\C,0.900068357,-6.0783 763542,-0.578201277\C,-0.900068357,6.0783763542,0.578201277\C,0.568954 1284.-1.1907905419.-0.5543114945\C.-0.5689541284.1.1907905419.0.554311 4945\C,-0.381255159,-1.2649275783,0.5558393385\C,0.381255159,1.2649275 783,-0.5558393385\C,-0.7158750675,-2.5452683985,1.0638396055\C,0.71587 50675,2.5452683985,-1.0638396055\C,-0.9426266487,-0.0725073416,1.08020 66513\C,0.9426266487,0.0725073416,-1.0802066513\C,1.256492225,-4.87046 65281,-1.1075080269\C,-1.256492225,4.8704665281,1.1075080269\C,1.07719 57952,-2.4040563329,-1.0804032722\C,-1.0771957952,2.4040563329,1.08040 32722\S,2.099554531,0.1627157476,-2.4578975536\S,-2.099554531,-0.16271 57476,2.4578975536\C,3.7204816978,-0.2080012342,-1.6362725972\C,-3.720 4816978,0.2080012342,1.6362725972\C,4.2384099352,0.8989128862,-0.72571 13608\C,-4.2384099352,-0.8989128862,0.7257113608\C,5.580695612,0.55459 72471,-0.0523125163\C,-5.580695612,-0.5545972471,0.0523125163\0,-6.101 9915388,-1.4578916632,-0.6669259154\0,6.1019915388,1.4578916632,0.6669 259154\0,-6.0680248915,0.6013058097,0.2476071554\0,6.0680248915,-0.601 3058097,-0.2476071554\K,7.9529257955,-0.1054417326,1.3602933558\K,-7.9 529257955.0.1054417326.-1.3602933558\H.3.6355892435.-1.1510093113.-1.0 929765556\H,-3.6355892435,1.1510093113,1.0929765556\H,4.4073102355,-0. 3784125767,-2.4711701339\H,-4.4073102355,0.3784125767,2.4711701339\H,4 .3651642133,1.8371231257,-1.2783700461\H,-4.3651642133,-1.8371231257,1 .2783700461\H,1.7455426769,-2.3536813529,-1.9324861468\H,-1.7455426769 ,2.3536813529,1.9324861468\H,1.4179440134,2.6006356267,-1.8875079202\H ,-1.4179440134,-2.6006356267,1.8875079202\H,3.515653182,1.1150604552,0 .0703448425\H,-3.515653182,-1.1150604552,-0.0703448425\H,1.9453782379, -4.8123610181,-1.9469197598\H,-1.9453782379,4.8123610181,1.9469197598\ H,1.2245132927,5.0603442201,-1.9074848914\H,-1.2245132927,-5.060344220 1,1.9074848914\H,1.3035855308,-6.9978986611,-0.9941028876\H,-1.3035855 308,6.9978986611,0.9941028876\H,0.2776664482,7.1220761884,-0.932139189 9\H,-0.2776664482,-7.1220761884,0.9321391899\\Version=AM64L-G03RevE.01 \State=1-AG\HF=-3376.2829138\RMSD=6.758e-09\RMSF=4.974e-06\Thermal=0.\ Dipole=0.,0.,0.\PG=CI [X(C28H20K2O4S2)]\\@

Conformer F of Table 1

1\1\GINC-MILLER1\FOpt\RB3LYP\6-31G(d)\C28H20K204S2\JHODGSON\16-Aug-2012\0\\# rb3lyp/6-31G* opt freq=noraman\\wsp_cs4s_6drb3\\0,1\C,0.4487984 334,2.8184083697,-0.0193093148\C,-0.4487984334,-2.8184083697,0.0193093 148\C,0.1919738501,1.4238476634,-0.0141144114\C,-0.1919738501,-1.42384 76634,0.0141144114\C,1.9878219237,4.7587194646,-0.0557315938\C,-1.9878 219237,-4.7587194646,0.0557315938\C,1.732721176,3.3460664837,-0.043751 7544\C,-1.732721176,-3.3460664837,0.0437517544\C,1.1225277841,-0.88924 48132,0.0118580829\C,-1.1225277841,0.8892448132,-0.0118580829\C,-1.338 2012076,-0.5122787204,0.0052283674\C,1.3382012076,0.5122787204,-0.0052 283674\C,2.8625628254,2.4427480131,-0.064989553\C,-2.8625628254,-2.442 7480131,0.064989553\C,2.6377023163,1.073429229,-0.0280128554\C,-2.6377 023163,-1.073429229,0.0280128554\C,3.2675331413,5.2356082673,-0.102019 2819\C,-3.2675331413,-5.2356082673,0.1020192819\C,-3.1319475766,2.2504 45355,1.6103366841\C,3.1319475766,-2.250445355,-1.6103366841\C,4.19118 55243,2.9844439713,-0.1327721645\C,-4.1911855243,-2.9844439713,0.13277 21645\C,4.3840018233,4.3371379796,-0.1494922041\C,-4.3840018233,-4.337 1379796,0.1494922041\C,-4.285418208,1.3275580261,2.0199219412\C,4.2854 18208,-1.3275580261,-2.0199219412\C,-5.3691003606,1.3401391739,0.92560 33253\C,5.3691003606,-1.3401391739,-0.9256033253\S,-2.5169007778,2.026 5216171,-0.1396378728\S,2.5169007778,-2.0265216171,0.1396378728\0,5.75 78291457,-2.4786992085,-0.5345643575\0,-5.7578291457,2.4786992085,0.53 45643575\0,5.7027966158,-0.2332835111,-0.4020121435\0,-5.7027966158,0. 2332835111.0.4020121435\K.-5.6952607026.1.5072600803.-1.8247798944\K.5 .6952607026,-1.5072600803,1.8247798944\H,-0.3973182263,3.4955723336,-0 .014022946\H.0.3973182263,-3.4955723336.0.014022946\H.1.1403494804.5.4 398862785,-0.0318529921\H,-1.1403494804,-5.4398862785,0.0318529921\H,-2.264887182,2.160467638,2.2700456789\H,2.264887182,-2.160467638,-2.270 0456789\H,-3.4795643709,3.2857922984,1.6186514113\H,3.4795643709,-3.28 57922984,-1.6186514113\H.-4.7066959116,1.718310483,2.9564502189\H.4.70 66959116,-1.718310483,-2.9564502189\H,-3.5020033416,-0.4216820846,0.03 63864575\H,3.5020033416,0.4216820846,-0.0363864575\H,-3.9437717299,0.3 059911357,2201232021\H,3.9437717299,-0.3059911357,-2.201232021\H,-5.0 209973441,-2.2845338421,0.1974342078\H,5.0209973441,2.2845338421,-0.19 74342078\H,3.4489399808,6.3073092776,-0.1128825991\H,-3.4489399808,-6. 3073092776,0.1128825991\H,-5.389664268,-4.7453307365,0.2082119543\H,5. 389664268,4.7453307365,-0.2082119543\\Version=AM64L-G03RevE.01\State=1 -AG\HF=-3376.290142\RMSD=5.119e-09\RMSF=7.834e-06\Thermal=0.\Dipole=0. ,0.,0.\PG=CI [X(C28H20K2O4S2)]\\@

Two molecule stack of conformer B (c.f. Fig. 6 (a))

$$\label{eq:solution} \begin{split} &1\label{eq:solution} 1\label{eq:solution} 1\lab$$

05677\C.3.8937266928.-5.3960890699.-0.2537379373\C.3.9669787025.-5.406 4035856,1.1779252986\C,3.892393814,-4.2423564536,1.8919163944\S,3.3951 710562,0.6857802988,3.7684958859\C,1.7520664105,-0.0423805694,4.248584 6806\C,0.5421947781,0.8707884631,4.0673438979\C,0.112936231,1.08683781 79,2.6022867802\O,-0.2789336278,2.2312915153,2.2737431714\S,3.32446723 53,0.7299836508,-2.7063818725\C,4.9634741564,1.5020980788,-3.146329613 9\O,0.1747540611,0.0749227829,1.8270484652\K,0.2420643989,-1.983528199 1,0.3288649277\O,0.3561848642,-2.4334616284,-2.2709235468\C,-0.0538914 604.-1.2932017685,-2.592359438\0,-0.0928274189,-0.2753463393,-1.824698 3081\C,-0.5509823965,-1.0933072481,-4.0377729101\C,-1.7684181281,-0.18 22613507,-4.1607726159\S,-3.3576130591,-0.8999961032,-3.5048313959\C,-3.2831080145,-0.6871061533,-1.7196871332\C,-3.4375397029,0.6047008276, 3,-0.4014354423,1.1302324664\C,-3.2268740292,-1.6775776262,0.566253790 2\C,-3.1373833004,-1.8276191299,-0.8857841439\C,-3.5421307873,1.780425 4656,-1.9413382078\C,-3.6566940755,3.0546002812,-1.3887745785\C,-3.686 9211133,3.1963998331,0.0525493984\C,-3.635590102,2.0556069706,0.843572 4746\C,-3.736290848,4.2402929466,-2.1941957091\C,-3.8325721801,5.47382 62278,-1.6121167387\C,-3.8555033422,5.6140253767,-0.1863839867\C,-3.78 47103911,4.5117562772,0.6178002054\C,-3.0309140667,-2.8236186667,1.375 1805971\C,-2.7606201479,-4.0797667512,0.8440055527\C,-2.6855003125,-4. 2310633745,-0.5950047855\C,-2.8758264759,-3.1187379034,-1.4061182858\C .-2.5403874267.-5.2333400662.1.6703865696\C.-2.2656585299.-6.450045059 5,1.1121656716\C,-2.1865736331,-6.5985714197,-0.3111051024\C,-2.388319 6172,-5.5273791848,-1.1348399809\\$,-3.7398118183,-0.2338744968,2.90066 37618\C,-5.4476237872,-0.9415120092,3.1213074711\C,-6.5921560982,-0.04 51106088,2.6545174237\C,-6.7726095947,-0.0119553255,1.1213625268\Q,-7. 1719276888,1.0690059204,0.6042314109\O,-6.5115644026,-1.0829257264,0.4 933737377\K,-6.5240176768,0.1976179543,-1.7321285659\K,-0.211587317,1. 7902528609,-0.3232415021\H,-2.0084850365,0.0168544444,-5.2111915195\H, 0.2704704324,-0.6226309336,-4.5993359879\H,-1.5827382498,0.7685857307, $-3.6588748551 \ H, -0.7382351024, -2.0698094052, -4.4927922481 \ H, -3.5186416$ 543,1.6847553463,-3.0212789061\H,-3.0752737455,-2.7019530867,2.4519231 526\H,-2.7846272152,-3.2331030765,-2.4791115509\H,-3.6770175319,2.1606 095275,1.9205179648\H,-3.7164885661,4.136953569,-3.2768964033\H,-2.605 0929296,-5.1173379233,2.7497932982\H,-2.3243669301,-5.6347115012,-2.21 44631075\H.-3.8009320395,4.6071247589,1.7000356646\H.-3.8931115427,6.3 638660175.-2.2328058982\H.-2.1081583992.-7.3184947871.1.746067011\H.-1 .9645436683,-7.5758006068,-0.7308959884\H,-3.9321307166,6.6061350726,0 .2489485863\H.-5.4947681988.-1.9023125233.2.6045342431\H.-5.4907492425 ,-1.1140169124,4.2025323051\H,-7.5237233274,-0.4544038,3.0752287374\H, 6.4900427101.0.9752144802.3.0349718905\H.2.9578948535.3.1827384968.-1 .9300868572\H,3.7086098182,-1.7766008572,2.9924156572\H,3.5239590478,-1.7481513199.-1.9735110905\H.3.065950217.3.1511773634.3.0351105733\H.2 .6215762699,5.6314312049,-1.9203408289\H,3.9410294871,-4.2516038104,2. 9786354076\H.3.6927710651,-4.1998582262,-2.0167106016\H.2.7543548755,5 $.5914642152, 3.0766279494 \label{eq:heat} 1.5914642152, 3.0766279494 \label{eq:heat} 1.5914642152, 3.0766279494 \label{eq:heat} 1.5914642152, 3.0766279494 \label{eq:heat} 1.5914642152, 3.0766279494 \label{eq:heat} 1.5954505225 \label{eq:heat} 1.6959485613 \label{eq:heat} 1.5954505225 \label{eq:heat} 1.5954505225 \label{eq:heat} 1.5954505225 \label{eq:heat} 1.5954505225 \label{eq:heat} 1.597407062 \label{eq:heat} 1.59746762 \label{eq:heat} 1.597407062 \label{eq:heat} 1.5974070$

Two molecule stack of conformer E (c.f. Fig. 6 (b))

1\1\GINC-MILLER4\FOpt\RB3LYP\6-31G(d)\C56H40K4O8S4\JHODGSON\11-Aug-2012\0\\# rb3lyp/6-31G* opt\\dimolwsp_cs2cc_6drb3\\0,1\C,-0.1032428717,1. 4679680396,4.3907837252\C,-0.6413361936,0.6771061322,3.3207169043\C,-1 .3511014107,1.3462413076,2.2492306437\C,-1.4963250657,2.7755159685,2.3 04188968\C,-0.9694874264,3.4846249372,3.3476866328\C,-0.2612102378,2.8 246227774,4.4036220908\C,-0.5119789452,-0.7040769544,3.2886742004\C,-1 .0687869268,-1.5022043437,2.2599018881\C,-1.7846929133,-0.8297281634,1 .1739271548\C,-1.878822973,0.5850978985,1.2130296388\C,-2.363797601,-1 .60473703,0.1364786238\C,-2.3277016155,-3.0222060992,0.1867570047\C,-1 .6315723809,-3.6919336937,1.2852940595\C,-0.9605342957,-2.9164270723,2 .2644377566\C,-2.9403031552,-3.829293369,-0.8033859558\C,-2.9396814058 -5.2160695747.-0.7485838197\C.-2.2769406016.-5.8779432117.0.355736602 6\C,-1.6422084268,-5.108723426,1.3204403801\C,-2.2909317493,-7.3124697 378,0.4051193866\C,-2.9105803143,-8.0421403508,-0.569555359\C,-3.56183 19966,-7.3871853936,-1.6654272976\C,-3.5745408492,-6.0237050397,-1.751 0719438\\$,0.037520723,-3.7291488638,3.5282977543\C,1.7373915681,-3.554 0899702,2.7899781902\C,1.9694556684,-4.4424175545,1.573544037\C,3.3473 746564,-4.2604739567,0.9057164118\0,4.269266466,-3.6820764148,1.553032 748\S.-3.0590204525.-0.7929317422.-1.3134779644\C.-4.8783694714.-0.797 8602613,-0.9722253136\C,-5.3420226303,0.4192257608,-0.1765724707\C,-6. 8592440854,0.4890693081,0.0378348833\0,-7.3171244572,1.5481958264,0.60 70429743\0,3.4517142208,-4.7188960681,-0.2737580792\0,-7.5768837711,-0 .475455623,-0.3337800218\K,5.8015291841,-3.7234016971,-0.568542834\K,-9.6980548291.0.5499705862.0.5377022618\H.1.8955940374.-2.4989053594.2. 5521356207\H,-5.1467391537,-1.7330370718,-0.4762593374\H,2.4206984909, -3.8120637757.3.6040947771\H.-5.352016275.-0.8051285601.-1.9586138251\ H,1.8721918674,-5.4998970178,1.8537927059\H,-5.0102926948,1.3327343121 .-0.6880091501\H.0.0101058446.-1.2039611091.4.0966685066\H.-3.41915861 24,-3.337602833,-1.6423076128\H,-1.1324820939,-5.6018430059,2.14009447 98\H.-2.3890250192.1.0887794399.0.3998798201\H.1.2062994309.-4.2625174

759,0.8107322966\H,-4.8652743994,0.4260833847,0.8132333193\H,0.4335214 245,0.9599788461,5.1885002035\H,-4.06666649947,-5.5231010833,-2.5817801 264\H,-1.7921950372,-7.8051272243,1.2364533854\H,-2.0399253246,3.29370 4971,1.5163819811\H,0.153103407,3.415053146,5.2170884527\H,-4.04605497 13,-7.9877411093,-2.4312604337\H,-2.9120515433,-9.1280532587,-0.522698 0822\H,-1.0828248589,4.5652250485,3.3753172547\C,3.6711206991,6.073516 2291,1.6099593447\C,3.0037737147,5.2500493778,0.6420527222\C,2.3175543 678,5.8939036648,-0.4585804488\C,2.3412064261,7.3268550873,-0.53898560 35\C.2.9921134853.8.0719379962.0.4031040325\C.3.6669389203.7.434936045 5,1.4952576461\C,2.9945656277,3.8647171024,0.7264965767\C,2.3509122746 ,3.0420221195,-0.2305041766\C,1.6334502594,3.694160486,-1.3259123933\C ,1.6527977094,5.109742442,-1.3905153046\C,0.9340097447,2.9035079809,-2 .2726207212\C,1.0350617031,1.4891189775,-2.2429146135\C,1.7730744403,0 .833817741,-1.1611910655\C,2.3766319862,1.6256395818,-0.1507161091\C,0 .4489860296,0.6741112396,-3.2417254064\C,0.5735876687,-0.7078149557,-3 .2517472081\C,1.3109061234,-1.3594467227,-2.1880419553\C,1.8640285825, -0.581609452,-1.1778122318\C,1.4541855684,-2.7894399659,-2.2231895982\ C,0.8957434031,-3.516082718,-3.2376874659\C,0.1571664373,-2.8735933091 .-4.2836250733\C,0.0032455703.-1.5164669407.-4.2913454188\S,3.08421169 7,0.8377600987,1.3060183094\C,4.9010322432,0.8300641652,0.9520894689\C ,5.3571108538,-0.4072024601,0.1834347609\C,6.8732755983,-0.48505236,-0 .0369426998\0,7.5931861099,0.4899539258,0.3014090489\S,-0.0889176307,3 .6977250532,-3.5281278342\C,-1.7745344154,3.5310849821,-2.7569070302\C ,-1.983459756,4.4281408788,-1.5426254624\C,-3.353850268,4.2578275575,-0.8563913179\O,-3.4392081513,4.7130171559,0.3257387097\O,7.3277587821, -1.5608816258,-0.5764956508\O,-4.2896421187,3.6902613347,-1.4935547849 \K,9.709119411,-0.5587056499,-0.5542779283\K,-5.7815439859,3.706074107 6,0.657938038\H,5.1682698064,1.7518221601,0.4311639432\H,-1.9304860871 ,2.4778563659,-2.5088232894\H,5.3817530669,0.8607552467,1.9346092524\H ,-2.4722763736,3.7850474736,-3.5599171113\H,5.0250181093,-1.3075909998 .0.7173573805\H.-1.8839784228.5.4832745225.-1.8309224177\H.3.491645547 3,3.3872033912,1.5630206202\H,-0.0926859006,1.1606073671,-4.0449589331 \H,2.3921375731,-1.0723091975,-0.3681062278\H,1.1259299178,5.589991566 1,-2.2069562109\H,4.8754074057,-0.4363432968,-0.8035941068\H,-1.210831 $1146, 4.248048615, -0.7894196815 \ H, 4.1809140445, 5.5867733671, 2.438258481$ 8\H.-0.5552218811,-1.0215306756,-5.0822963041\H.2.0227869412,-3.294498 8373,-1.4448158132\H,1.8246146846,7.8058202879,-1.3674071067\H,4.17587 69337,8.0475197102,2.2350959462\H.-0.2821807406,-3.4776684489,-5.07358 77377\H,1.0079148102,-4.5970294563,-3.2499549987\H,3.0008516106,9.1565 524731.0.3329050618\\Version=AM64L-G03RevE.01\State=1-A\HF=-6752.62218 68\RMSD=7.176e-09\RMSF=2.604e-05\Thermal=0.\Dipole=0.0379212,-0.045229 8,0.0032546\PG=C01 [X(C56H40K4O8S4)]\\@

syn-3,3'-((6,13-dihydropentacene-6,13-diyl)bis(sulfanediyl))dipropanoic acid (2) ¹H NMR (Methanol- d_4)

syn-3,3'-((6,13-dihydropentacene-6,13-diyl)bis(sulfanediyl))dipropanoic acid (2) ¹³C NMR (Methanol- d_4)

syn-3,3'-((6,13-dihydropentacene-6,13-diyl)bis(sulfanediyl))dipropanoic acid (2) ¹³C NMR (Methanol- d_{4}) CD_3OD 49.60 49.50 49.40 49.30 49.20 49.10 49.00 f1 (ppm) 48.90 48.80 48.70 48.60 48.50 48.40 36.5 36.0 29.5 37.5 37.0 35.5 35.0 34.5 34.0 33.5 33.0 32.0 31.5 31.0 30.5 30.0 29.0 28.5 28.0 27.5

) 32.5 f1 (ppm)

												$ \dots \dots$	(TTTT)
38.0	137.0	136.0	135.0	134.0	133.0	132.0 f1 (p	131.0 opm)	130.0	129.0	128.0	127.0	126.0 ₁ !	5 125.

17

syn-3,3'-((6,13-dihydropentacene-6,13-diyl)bis(sulfanediyl))dipropanoic acid (2) DMSO- d_6 ¹³C NMR (100 MHz, DMSO- d_6) HOO Ч ́″Н HOOC . Youry will be drawn wr har hawl we we want water a state of the second of ^{**}*nalUpy/spa¹LLcolaboudewogewodewoldawoldaachiwa/dapanaviogenzwawoniwiwanavidunjagapanahadaviogewidakyodewodeyohy¹*ralizeett Washing Washington harmon has an f1 (ppm) f1 (ppm)

42

(40712)

L

PLATON-Sep 19 22:09:44 2012

Z

26

4.00-J

9.6

9.4

9.2

9.0

8.8

8.6 f1 (ppm) 8.4

9.8

10.0

3,3'-(Pentacene-6,13-diylbis(sulfanediyl))dipropanoic acid (3)

4.22-

8.0

7.8

8.2

7.0

7.2

4.10-

7.4

7.6

200

- 3,3'-(Pentacene-6,13-diylbis(sulfanediyl))dipropanoic acid (3)
- ¹³C NMR (Acetic Acid- d_4) at 80 °C

3,3'-(Pentacene-6,13-diylbis(sulfanediyl))dipropanoic acid (3) ¹³C NMR (Acetic Acid- d_4) at 80 °C 38.5 38.0 37.5 37.0 36.5 36.0 35.0 f1 (ppm) 34.0 33.5 33.0 32.5 35.5 34.5 32.0 31.5 HOOC S S COOH WW 126 143 142 140 139 138 137 136 135 134 133 132 130 129 128 127 125 124 123 122 141 131 f1 (ppm)

3,3'-(Pentacene-6,13-diylbis(sulfanediyl))dipropanoic acid (3)

LDI MS

Anhydride of 3,3'-(Pentacene-6,13-diylbis(sulfanediyl))dipropanoic acid (3)

Potassium 3,3'-(pentacene-6,13-diylbis(sulfanediyl))dipropanoate (**4**) ¹H NMR (D₂O)

Potassium 3,3'-(pentacene-6,13-diylbis(sulfanediyl))dipropanoate (4)

¹H NMR (Methanol- d_4)

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is © The Royal Society of Chemistry 2013

Potassium 3,3'-(pentacene-6,13-diylbis(sulfanediyl))dipropanoate (**4**) ¹³C NMR (D_2O with K_2CO_3)

Potassium 3,3'-(pentacene-6,13-diylbis(sulfanediyl))dipropanoate (4) 13 C NMR (D₂O)

Potassium 3,3'-(pentacene-6,13-diylbis(sulfanediyl))dipropanoate (4) ¹³C NMR (D₂O) 35.5 f1 (ppm) 38.5 38.0 37.5 37.0 36.5 36.0 35.0 34.5 34.0 33.5 33.0 32.5 KOOC S S COOK mon man www mmmmmm 128.0 f1 (ppm) 131.5 131.0 130.5 130.0 129.5 129.0 127.5 127.0 126.5 126.0 125.5 125.0 124.5 128.5 12

Potassium 3,3'-(pentacene-6,13-diylbis(sulfanediyl))dipropanoate (4)

MALDI MS (matrix: sulfur)

Melting point apparatus calibration

Melting	point	apparatus	calibration
---------	-------	-----------	-------------

NO.	Chemical		M.P. on bottle /°C	M.P. measured/°C
1	2,2'-Biquinoline	crystal	193	190
2	4-hydroxyquinoline	powder	201	201
3	m-hydroxybenzoic acid	crystal	203	203
4	p-hydroxybenzoic acid	powder	214	210
5	4,4'-sulfonyl diphenol	crystal	225	224
6	dicyanobenzene	powder	244	246
7	tetra bromo hydroquinone	crystal	253	253
8	triptycene	powder	254	254
9	4-quinolin carboxylic acid	powder	254	256
10	pentaerythritol	crystal	257	256
11	4-iodobenzoic acid	powder	273	274
12	3-quinolin carboxylic acid	powder	278	283
13	tetraphenylmethane	crystal	281	284

NO.	Name	M.P. measured /°C	M.P. calibrated /°C
3	3,3'-[(6,13-pentacenediyl) bis(sulfanediyl)]dipropanoic acid	235	235
4	Potassium 3,3'-[(pentacene-6,13- diyl)bis(sulfanediyl)]dipropanoate	278	276