## **Supporting Information**

## For

## 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane for Fast Response Organic Photodetectors with High External Efficiency and Low Leakage Current

Dezhi Yang and Dongge Ma\*



Figure S.1 Normalized absorption spectrum of TPAC and C70.





**Figure S.2** Frequency response characteristics under different bias conditions and excitation by a 405nm laser. The device structure is ITO/ TAPC (40 nm) / TAPC: C70 (50 nm) / C70 (20 nm) / Al. The TAPC concentrations in figure (a), (b) and (c) are 15%, 30% and 45%, respectively.



Figure S.3 J–V characteristic of the photodetector with 30% TAPC concentration at dark.





**Figure S.4** EQE values of the photodetector under different reverse voltages and the absorption efficiency of the mixing layer calculated by transfer matrix method. The device structure is ITO / TAPC (40 nm) / TAPC: C70 (50 nm) / C70 (20 nm) / Al. The TAPC concentrations in figure (a), (b) and (c) are 15%, 30% and 45%, respectively. The solid line shows the absorption efficiency.



**Figure S.5** EQE values of the photodetector under different reverse voltages and the absorption efficiency of the mixing layer calculated by transfer matrix method. The device structure is ITO / TAPC (40 nm) / TAPC: C70 (75 nm) / C70 (20 nm) / Al and the TAPC concentration is 30%.