## Electronic Supplementary Information for

## Adjustment of charge trap number and depth in molecular backbone

## to achieve tunable multilevel data storage performance

Shifeng Miao,<sup>*a*</sup> Yongxiang Zhu,<sup>*a*</sup> Hao Zhuang,<sup>*a*</sup> Xiaoping Xu,<sup>*a*</sup> Hua Li,<sup>*a*</sup> Ru Sun,<sup>*a*</sup> Najun Li,<sup>*a*</sup> Shunjun Ji,<sup>*a*</sup> and Jianmei Lu<sup>*a*</sup>

<sup>a</sup> Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China E-mail: lujm@suda.edu.cn; lihuaw@suda.edu.cn

## **Table of Contents**

| 1. SEM image of sandwich-structure memory device                           | <b>S</b> 2 |
|----------------------------------------------------------------------------|------------|
| 2. Reproducibility test of the memory devices under multiple voltage loops | <b>S</b> 2 |
| 3. Stability test of the memory device                                     | <b>S</b> 3 |
| 4. XRD patterns                                                            | <b>S</b> 3 |
| 5. AFM height images                                                       | S4         |
| 6. UV-vis absorption spectra and CV of TPAVH 4                             | S4         |
| 7. Theoretical calculation                                                 | S5         |



Figure S1. The cross-section profile of TPAAC 1-based sandwich-structure memory device.



**Figure S2.** Current-voltage (*I-V*) curves of the three molecules-based memory devices under multiple voltage loops.



**Figure S3.** Stability test of the memory device in all states under constant voltage stress or stimulus by read pulses at -1 V. The insets show the pulse shape.



**Figure S4.** X-ray diffraction (XRD) patterns of the thin films deposited on ITO substrate for the three molecules. It is shown that the three molecules all revealed high-intensity diffraction peaks, indicating that close packing between the neighboring molecules and highly ordered crystalline films were formed due to the strong intermolecular  $\pi$ - $\pi$  stacking.



**Figure S5.** Tapping-mode AFM height images  $(5 \times 5 \mu m^2)$  of the thin films vacuum-deposited on ITO substrate and corresponding cross-section profiles for TPAAC **1** (a, d), TPAVC **2** (b, d), and TPAAH **3** (c, f), respectively.



**Figure S6.** (a) UV-vis absorption spectra in THF solution and thin films deposited on quartz substrate of TPAVH **4**. (b) Cyclic voltammogram in 0.1 M TBAP/CH<sub>2</sub>Cl<sub>2</sub> solution of TPAVH **4**. The ferrocene/ferrocenium redox couple is used as a standard (-4.8 eV, the onset potential is 0.57 eV). A scan rate of 100 mV s<sup>-1</sup> was used.



**Figure S7.** HOMO and LUMO energy levels for the two functional fragments (benzyl cyanide moiety and azobenzene chromophore).