Supporting Information

Solution-processed core-extended naphthalene diimides toward organic n-type and ambipolar semiconductors

Hewei Luo, Zhengxu Cai, Luxi Tan, Yunlong Guo, Ge Yang, Zitong Liu,* Guanxin Zhang, Deqing Zhang,* Wei Xu and Yunqi Liu

Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: dqzhang@iccas.ac.cn

Contents

1.	Materials and general methods	S2
2.	Synthesis of compounds 5 and 6	S2-S3
3.	TGA and DSC analysis data for 1-4	S3-S4
4.	Cyclic voltammogram of N,N'-hexyl NDI	S4
5.	Absorption spectra of 1-4	35-S6
6.	DFT calculation dataS	6-S11
7.	OFETs characteristics of 1-2 under ambient conditions	S12
8.	Complementary inverters of 2	S13
9.	Variation of mobilities and on/off ratios of OFETs of 3 and	4 in
	air	S13
10.). Possible intermolecular packing for molecules 1-4 on the sub surface	strate .S13
11.	. ¹ H- and ¹³ C-NMR spectra of 1-6	4-S18

1. Materials and general methods

Materials. The reagents and starting materials were commercially available and used without any further purification if not specified elsewhere. **TBNDI** and sodium *1*, *1*-dicyanoethylene-2, *2*-dithiolate were synthesized according to the reported procedures. ^{S1-S2} Compounds **5-6** were also synthesized according to the previous report^{S3} and the crude compounds were used without further purification.

General methods. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were obtained on a Bruker DMX-400 NMR Spectrometer using tetramethylsilane as an internal standard. Elemental analysis was performed on a Carlo Erba model 1160 elemental analyzer. MALDI-TOF MS were recorded with BEFLEX III spectrometer. Thin films absorption spectra were measured with JASCO V-570 UV-Vis spectrophotometer. TGA-DTA measurements were carried out on a SHIMADZU DTG-60 instruments under a dry nitrogen flow, heating from room temperature to 500 °C, with a heating rate of 10 °C/min. Cyclic voltammetric measurements were carried out in a conventional three-electrode cell using Pt button as working electrodes of 2 mm diameter, a platinum wire as counter electrode, and an Ag/AgCl reference electrode on a computer-controlled CHI660C instrument at room tempera-ture. X-ray diffraction (XRD) measurements were carried out in the reflection mode at room temperature using a 2 kW Rigaku X-ray diffraction system. Atomic force microscopy (AFM) images of the thin films were obtained on a Nanoscope IIIa AFM (Digital In struments) operating in tapping mode. The molecular structures of the compounds were optimized using the DFT method at B3LYP/6-31G(d) level. All calculations were performed with the programs Gaussian 03.

S1. X. Gao, W. Qiu, X. Yang, Y. Liu, Y. Wang, H. Zhang, T. Qi, Y. Liu, K. Lu, C. Du, Z. Shuai, G. Yu and D. Zhu, *Org. Lett.*, 2007, **9**, 3917.

S2. C. Rögerr and F. Würthner, J. Org. Chem., 2007, 72, 8070.

S3. B. Chenard, R. Harlow, A. Johnson and S. Valduchick, J. Am. Chem. Soc., 1985, 107, 3871.

2. Synthesis of compounds 5 and 6

Compound 5. Under nitrogen atmosphere 1,2-benzenedithiol (500 mg, 3.5 mmol) was dissolved in 10 ml of NaOH (5%, wt%) solution. After 5.0 min, tetra-*n*-butylammonium bromide (1.15 g, 3.57 mmol) in 5 ml of water was added, followed by addition of zinc chloride (365.58 mg, 1.75 mmol) in 5.0 ml of ethanol. The reaction mixture was stirred at room temperature for 2.0 h and then filtered and dried. The collected white solid (1.4 g, 96%) was used in following steps without further purification. ¹H NMR (400 MHz, DMSO-d₆) δ 7.16 (s, 4H), 6.37 (s, 4H), 3.15 (t, *J* = 7.48 Hz, 16H), 1.56 (b, 16H), 1.31 (b, 16H), 0.93 (t, *J* = 7.08, 24H). MS (ESI)

m/z: 172.8 [M-2(*n*-Bu₄N)]²⁻, 242.2[*n*-Bu₄N]⁺, 586.1 [M- (*n*-Bu₄N)]⁻.

Compound 6. A portion of 5.4 mL of *n*-butyllithium (1.3 M in hexane, 7.0 mmol) was added dropwise to a solution of 2, 3-dibromonaphthalene (500 mg, 1.75 mmol) and sublimed sulfur (112 mg, 3.5 mmol) in anhydrous THF (10 mL) under argon atmosphere at -78 °C. After 30 min, the reaction was quenched by 2.0 ml of NaOH solution (1.0 M). Tetra-*n*-butylammonium bromide (675 mg, 2.1 mmol) in 5.0 ml of water and zinc chloride (182 mg, 0.88 mmol) in 5 ml of ethanol was injected to the reaction mixture in sequence. The mixture was warmed up to room temperature and stirred 2.0 h and then filtered and dried. The collected yellow solid (350 mg, 22%) was used in following steps without further purification. ¹H NMR (400 MHz, DMSO-d₆) δ 7.69 (s, 4H), 7.34 (s, 4H), 6.99 (s, 4H), 3.15 (t, *J* = 7.36 Hz, 16H), 1.55 (b, 16H), 1.30 (b, 16H), 0.93 (t, *J* = 7.02, 24H). MS (ESI) m/z: 222.9 [M-2(*n*-Bu₄N)]², 242.2[*n*-Bu₄N]⁺, 686.0 [M- (*n*-Bu₄N)]⁻.

3. TGA and DSC analysis data for1-4

Figure S1. TGA curves of 1-4

Figure S2. DSC curves of 1-4

4. Cyclic voltammograms of N,N'-hexyl NDI

Figure S3. Cyclic voltammogram of N,N'-hexyl NDI (1.0 mM) in CH₂Cl₂ at a scan rate of 50 mVs⁻¹, with Pt as the working and counter electrodes and Ag/AgCl electrode (saturated KCl) as the reference electrode, and *n*-Bu₄NPF₆ (0.1 M) as supporting electrolyte.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

5. Absorption spectra of 1-4 and N, N'-hexyl NDI

Figure S4. Absorption spectra of solutions of **1-4** $(1.0 \times 10^{-5} \text{ M})$ in CH₂Cl₂ and those of their thin-films.

6. DFT calculation data

Tab	Table S1. Coordinates and energy of compound 1				
	X Y Z				
1	С	-2.403781	-0.717818	0.504728	
2	С	-2.403767	0.718367	0.504402	
3	С	-1.194395	1.403375	0.312368	
4	С	0.002793	0.707039	-0.010534	
5	С	0.002698	-0.706830	-0.010544	
6	С	-1.194538	-1.402961	0.312569	
7	С	1.199542	1.404454	-0.332445	
8	С	2.409918	0.718056	-0.516735	
9	С	2.409827	-0.718268	-0.516707	
10	С	1.199309	-1.404473	-0.332509	
11	С	1.124201	-2.871503	-0.537940	
12	Ν	0.001381	-3.518244	-0.016161	
13	С	-1.115203	-2.869349	0.508347	
14	С	-1.115044	2.869773	0.507859	
15	Ν	0.002450	3.518441	-0.015058	
16	С	1.124675	2.871516	-0.537794	
17	S	-3.880864	-1.658321	0.865692	
18	С	-5.150418	-0.696802	0.068813	
19	С	-5.150419	0.696798	0.068293	
20	S	-3.880941	1.659036	0.864449	
21	S	3.892367	1.655736	-0.865801	
22	С	5.150005	0.696552	-0.047577	

23	С	5.149921	-0.696997	-0.047537
24	S	3.892167	-1.656149	-0.865617
25	С	-6.202415	-1.395569	-0.537216
26	С	-7.268093	-0.698752	-1.103309
27	С	-7.268091	0.697851	-1.103843
28	С	-6.202417	1.395100	-0.538277
29	С	6.191999	1.395265	0.575399
30	С	7.248417	0.698009	1.158199
31	С	7.248342	-0.698617	1.158230
32	С	6.191848	-1.395789	0.575472
33	0	-1.980097	-3.520102	1.081354
34	0	1.995702	-3.503645	-1.120893
35	0	-1.980604	3.520826	1.079550
36	0	1.995950	3.503474	-1.121274
37	С	-0.023797	-4.986572	0.007452
38	С	-0.022463	4.986765	0.009052
39	Н	-6.182025	-2.480991	-0.554571
40	Н	-8.088615	-1.246272	-1.556438
41	Н	-8.088610	1.245027	-1.557393
42	Н	-6.182032	2.480509	-0.556458
43	Н	6.171416	2.480671	0.592765
44	Η	8.061674	1.245239	1.624596
45	Η	8.061550	-1.245910	1.624638
46	Н	6.171154	-2.481193	0.592898
47	Η	0.868279	-5.341102	-0.501830
48	Η	-0.045215	-5.337887	1.041070
49	Η	-0.922282	-5.346627	-0.496766
50	Η	0.877543	5.341242	-0.486102
51	Η	-0.060385	5.336653	1.042559
52	Н	-0.912463	5.348299	-0.509227

Total energy: -3078.6631212 Hartrees

	Table S2. Coordinates and energy of compound 2				
		X	Y	Z	
1	С	-2.350058	-0.861472	0.765796	
2	С	-2.338755	0.575000	0.783822	
3	С	-1.151096	1.252261	0.468680	
4	С	-0.001415	0.550610	0.009463	
5	С	-0.002140	-0.864962	0.008273	
6	С	-1.170830	-1.553868	0.450178	
7	С	1.149471	1.250167	-0.449355	
8	С	2.335207	0.572928	-0.769091	
9	С	2.345185	-0.863527	-0.753269	

Table 62 Coordinates and ana ov of compound ?

10	С	1.165756	-1.554731	-0.435224
11	C	1.086743	-3.025547	-0.599665
12	N	-0.003458	-3.630334	0.007554
13	C	-1.092991	-3.024842	0.615102
14	C	-1.044925	2.718131	0.674187
15	N	0.000674	3.366064	0.013656
16	C	1.041122	2.715423	-0.645984
17	S	-3.788165	-1.797638	1.262679
18	C	-5.130770	-0.823427	0.618537
19	C	-5.118352	0.590254	0.642093
20	S	-3.759253	1.517499	1.320929
21	S	3.751675	1.517942	-1.311343
22	C	5.115926	0.589022	-0.645430
23	C	5.127576	-0.824674	-0.621732
24	S	3.780735	-1.800136	-1.255374
25	C	-6.232684	-1.499690	0.134776
26	C	-7.384515	-0.798175	-0.304487
27	C	-7.372223	0.634213	-0.280598
28	C	-6.208539	1.300741	0.181445
29	C	6.210412	1.298812	-0.193915
30	C	7.377333	0.631706	0.258920
31	С	7.388729	-0.800666	0.283429
32	C	6.232953	-1.501413	-0.146473
33	0	-1.904858	-3.703753	1.227127
34	0	1.898485	-3.705416	-1.210914
35	0	-1.831271	3.347358	1.370005
36	0	1.823605	3.362515	-1.330318
37	C	0.022007	4.834294	-0.014465
38	C	-8.542596	-1.468674	-0.781256
39	C	-9.638213	-0.755893	-1.212442
40	C	-9.626088	0.660668	-1.188798
41	С	-8.518566	1.339864	-0.734415
42	С	8.527809	1.336712	0.703184
43	C	9.638372	0.656871	1.149099
44	C	9.649573	-0.759693	1.173450
45	С	8.550017	-1.471846	0.751360
46	Н	-0.003485	-4.644323	0.007958
47	Н	-6.225727	-2.585396	0.094581
48	Н	-6.183057	2.386923	0.177695
49	Н	6.185653	2.385015	-0.190225
50	H	6.225607	-2.587112	-0.105954
		0 200155	5 180015	0 601291
51	Н	-0.800133	5.167015	0.001271
51 52	H H	-0.085029	5.184081	-1.043244

54	Н	-8.549153	-2.555086	-0.798810
55	Н	-10.518637	-1.278506	-1.573979
56	Н	-10.497362	1.210016	-1.532451
57	Н	-8.506629	2.426228	-0.715776
58	Н	8.516570	2.423072	0.684054
59	Н	10.512792	1.205712	1.485497
60	Н	10.532424	-1.282791	1.528301
61	Н	8.555846	-2.558254	0.769464

Total energy: -3346.6450677 Hartrees

		X	Y	Z
1	С	-2.501870	0.721389	-0.437812
2	С	-2.501878	-0.721201	-0.437987
3	С	-1.276642	-1.409370	-0.447832
4	С	-0.047967	-0.708129	-0.315631
5	С	-0.047944	0.708259	-0.315632
6	С	-1.276616	1.409547	-0.447674
7	С	1.177894	-1.407489	-0.171167
8	С	2.375104	-0.709625	-0.009074
9	С	2.375150	0.709624	-0.009172
10	С	1.177967	1.407553	-0.171282
11	С	1.203260	2.880673	-0.172227
12	Ν	-0.006408	3.527487	-0.387541
13	С	-1.223289	2.879210	-0.639007
14	С	-1.223306	-2.879017	-0.639427
15	Ν	-0.006565	-3.527371	-0.387494
16	С	1.203086	-2.880603	-0.171916
17	S	-4.009105	1.667214	-0.556142
18	С	-5.170808	0.696218	0.379087
19	С	-5.170842	-0.696289	0.378825
20	S	-4.009145	-1.666954	-0.556763
21	С	-6.144048	1.395416	1.104680
22	С	-7.134378	0.698076	1.793141
23	С	-7.134416	-0.698594	1.792868
24	С	-6.144119	-1.395717	1.104140
25	0	-2.184050	3.541302	-1.007098
26	Ο	2.249554	3.504131	-0.009620
27	Ο	-2.183953	-3.540989	-1.008000
28	0	2.249305	-3.504103	-0.008969
29	С	-0.011727	4.993706	-0.498313
30	С	-0.011900	-4.993577	-0.498284
31	S	3.934256	-1.504587	0.209201

Table S3. Coordinates and energy of compound 3

32	С	4.840793	-0.000091	0.328575
33	S	3.934387	1.504473	0.208945
34	С	6.206690	-0.000132	0.512611
35	С	6.933686	1.223495	0.610916
36	Ν	7.509801	2.232822	0.689049
37	С	6.933582	-1.223807	0.611090
38	Ν	7.509628	-2.233162	0.689372
39	Н	-6.122755	2.480821	1.119632
40	Н	-7.895318	1.245379	2.340343
41	Н	-7.895392	-1.246070	2.339846
42	Н	-6.122881	-2.481130	1.118668
43	Н	-0.174085	5.290743	-1.536927
44	Н	-0.824388	5.394935	0.107411
45	Н	0.951321	5.356632	-0.149297
46	Н	0.950828	-5.356584	-0.148455
47	Н	-0.825090	-5.394735	0.106769
48	Н	-0.173349	-5.290627	-1.537039

Total energy: -3109.5050274 Hartrees

		X	Y	Z
1	С	1.705347	-0.721673	-0.858128
2	С	1.705330	0.721727	-0.858107
3	С	0.484432	1.409410	-0.750338
4	С	-0.724213	0.708263	-0.494335
5	С	-0.724199	-0.708240	-0.494341
6	С	0.484446	-1.409374	-0.750354
7	С	-1.929034	1.407678	-0.225403
8	С	-3.103139	0.709733	0.058105
9	С	-3.103137	-0.709734	0.058081
10	С	-1.929024	-1.407665	-0.225427
11	С	-1.954325	-2.880868	-0.224503
12	Ν	-0.773544	-3.527401	-0.564657
13	С	0.411226	-2.878566	-0.939182
14	С	0.411185	2.878598	-0.939186
15	Ν	-0.773596	3.527426	-0.564731
16	С	-1.954339	2.880887	-0.224457
17	S	3.193524	-1.665434	-1.126139
18	С	4.439527	-0.706443	-0.293637
19	С	4.439502	0.706491	-0.293560
20	S	3.193523	1.665515	-1.126060
21	С	5.461681	-1.400356	0.322385
22	С	6.547209	-0.716381	0.926582

 Table S4. Coordinates and energy of compound 4

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is The Royal Society of Chemistry 2013

23	С	6.547177	0.716352	0.926679
24	С	5.461628	1.400360	0.322557
25	0	1.328433	-3.539624	-1.406527
26	0	-2.978341	-3.504409	0.044867
27	0	1.328393	3.539660	-1.406531
28	0	-2.978338	3.504414	0.044997
29	С	-0.780069	-4.993322	-0.678400
30	С	-0.780122	4.993345	-0.678547
31	S	-4.632044	1.504537	0.434410
32	С	-5.522157	-0.000013	0.643335
33	S	-4.632031	-1.504566	0.434344
34	С	-6.863282	-0.000034	0.961019
35	С	-7.577197	-1.223642	1.130064
36	Ν	-8.143154	-2.232847	1.264085
37	С	-7.577219	1.223556	1.130102
38	Ν	-8.143217	2.232733	1.264161
39	С	7.625556	-1.404979	1.543678
40	С	8.657022	-0.708481	2.131098
41	С	8.656989	0.708385	2.131197
42	С	7.625490	1.404916	1.543871
43	Н	5.442963	-2.486489	0.341942
44	Н	5.442872	2.486491	0.342241
45	Н	0.090974	-5.395757	-0.161057
46	Н	-0.726433	-5.288210	-1.728869
47	Н	-1.701776	-5.356973	-0.232076
48	Н	-1.701898	5.357001	-0.232374
49	Н	-0.726321	5.288159	-1.729026
50	Н	0.090827	5.395838	-0.161086
51	Н	7.623231	-2.491457	1.542849
52	Н	9.477304	-1.244331	2.598834
53	Н	9.477245	1.244209	2.599007
54	Н	7.623113	2.491394	1.543191

Total energy: -3263.1520747 Hartrees

7. OFETs characteristics of 1 and 2 under ambient conditions

Figure S5 The transfer characteristics of OTFT devices based on **1** (a) annealed at 120 °C (V_{DS} for transfer characteristics is -80 V) and **2** (b) annealed at 140 °C (V_{DS} for transfer characteristics is -80 V) under ambient conditions; the transistor channel width and channel length were 1400 μ m and 50 μ m, respectively.

8. Complementary inverters of 2

Figure S6. Complementary inverters fabricated from thin-films of **2**: (a) Schematic electrical layout of the inverters; (b) Static switching characteristics of a spin-coated inverter on OTS-treated Si / SiO₂ substrate annealed at 140 $^{\circ}$ C; (c) Gain data for the devices.

9. Variation of mobilities and on/off ratios for OFETs of 3 and 4 in air

Figure S7. Variation of the electron mobilities and on/off ratios for OFETs of **3** and **4** in air for 30 days.

10. Possible intermolecular packing for molecules 1-4 on the substrate surface

Figure S8. The proposed intermolecular packing on the substrate surface for molecules 1-4.

11. ¹H- and ¹³C-NMR spectra of 1-6

Compound 6

