Copper Oxide Quantum Dots Ink for Inkjet-Driven Digitally Controlled High Mobility Field Effect Transistors

Mohammad Vaseem, A-Ra Hong, Ryun-Tak Kim, and Yoon-Bong Hahn*

Dept. of BIN Fusion Technology, School of Semiconductor and Chemical Engineering, BK 21 Centre for Future Energy Materials and Devices, and Nanomaterials Processing Research Center, Chonbuk National University, Jeonju 561-756, South Korea

Supplementary information

Ink sample No.	CuO NPs (wt %)	Water (wt %)	Ethanol + Isopropyl alcohol (wt %)	Ethylene glycol (wt %)	Surface tension (mN/m)	Viscosity (cP)
А	10	60	20 + 5	5	33.707	3.34
В	20	50	20 + 5	5	35.426	4.14
С	30	40	20 + 5	5	37.915	4.80

Table 1. Formulation condition of CuO quantum-based inks

Table 2. Comparison table for performance parameters among p-type materials, process and	ł
Mobility observed in literature based TFTs	

Material	Process	Temp [⁰ C] as- synthesized/ post annealed	Substrate/ dielectric	On/off current ratio	Mobility (μ), cm²/V.s	Reference
SnO ₂	Thermal evaporation	RT/100	Si/SiO ₂	~10 ²	4.7×10 ⁻³	34
SnO	electron beam evaporation	RT/400	Si/SiO ₂	~10 ²	0.87	35
SnO	PLD	RT/250	Si/SiO ₂	$\sim 10^{3}$	0.75	36
NiO	EDLT	RT	NiO/ electrolyte	~130	1.6×10 ⁻⁴	37
Cu ₂ O	PLD	500	Si-SiO ₂ / HfON	~3×10 ⁶	4.3	38
Cu ₂ O	magnetron sputtering	RT	ITO- PET/AlN	~3.9×10 ⁴	2.4	39
CuO NWs	Thermal evaporation	500/RT	Si/SiO ₂	~100	15	40
CuO	rf sputtering	RT/300	Si/SiO ₂	~10 ⁴	0.4	41
CuO NPs	Inkjet-Printed dot pattern	100/RT	Si/SiO ₂	$\sim 0.2 \times 10^3$	16.6	This work
CuO NPs	Inkjet-Printed dot pattern	100/MAA (2 min)	Si/SiO ₂	$\sim 7.0 \times 10^3$	31.22	This work

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is The Royal Society of Chemistry 2013

Figure S1. (a) UV-DRS and (b) plots of $(\alpha hv)^2 vs$. photon energy for as-synthesized CuO QDs.

Figure S2. (a) 3D surface profiler image of dots and (b) width scan of a single dot printed using ink A (10 wt % CuO QDs); (c) 3D surface profiler image of dots and (d) width scan of a single dot printed with ink B (20 wt % CuO QDs); (e) CCD microscopic image of the CuO line with single-layer printing and its corresponding cross-sectional FESEM images showing at edge (e-1) and at middle (e-2) areas of the CuO line printed using ink B; Cross-section FESEM images of the CuO line printed with 2 overprinting (f), 3 overprinting (g) and 4 overprinting (h) using ink B.

Figure S3. CuO line thickness and line width as a function of number of overprinting using (a) ink A, (b) ink B and (c) ink C.

Figure S4. Contact angle of droplets using as-formulated CuO ink C on various substrates i.e. (a) Si/SiO₂,(b) Bare glass, (c) PI and (d) ITO.

Figure S5. AFM images of CuO nano-films after conventional annealing at different temperatures: (a) 100 °C, (b) 150 °C, (c) 200 °C, and (d) 250 °C. CuO lines were printed using ink C.

Figure S6. Typical X-ray diffraction patterns for the printed CuO nanofilms after microwave-assisted annealing (MAA) at different times. CuO nanofilms were printed using ink C. In inset showing magnified XRD pattern of CuO nanofilms at room-temperature