Electronic Supplementary Information

Erratic Magnetic Hysteresis of TbPc₂ Molecular Nanomagnets

Luigi Malavolti, Matteo Mannini Pierre-Emmanuel Car, Giulio Campo, Francesco Pineider, and Roberta Sessoli

Figure S1. Temperature dependance of the hysteresis loop of a pristine sample of $TbPc_2 \cdot CH_2Cl_2$. Tfield sweeping rate is 50 Oe/s.

a)

b)

Figure S2. Frequency dependence of the product of temperature with the out-of-phase component of the magnetic susceptibility of pristine powder of $\text{TbPc}_2 \cdot \text{CH}_2\text{Cl}_2$, measured in zero static field (a) and applied static field of 5 kOe (b) in the temperature range 5-60 K. Filled circles refer to data acquired with a Quantum Design PPMS, empty square to data acquired with a Quantum Design MPMS.

a)

Figure S3. Frequency dependence of the product of temperature with the out-of-phase component of the magnetic susceptibility of heated powder of TbPc_2 , measured in zero static field (a) and applied static field of 5 kOe (b) in the temperature range 5-60 K. Filled circles refer to data acquired with a Quantum Design PPMS, empty square to data acquired with a Quantum Design MPMS.

Figure S4. Temperature dependence of the parameter describing the width of the distribution of relaxation time extracted from the simulation of the out-of-phase component of the ac susceptibility according to the extended Debye model:

$$\chi'' = (\chi_T - \chi_S) \frac{(\omega \tau)^{1-\alpha} \cos(\pi \frac{\alpha}{2})}{1 + 2(\omega \tau)^{1-\alpha} \sin(\pi \frac{\alpha}{2}) + (\omega \tau_A)^{2-2\alpha}}$$

Where χ_T and χ_S correspond to the isothermal and adiabatic limits.