Supporting Information

Combination of Multiple Chromophores Enhances Second-Harmonic Generation in Nonpolar Noncentrosymmetric Oxide: CdTeMoO₆

Sangen Zhao,^{a,⊥} Xingxing Jiang, ^{b,c,⊥} Ran He,^{b,c} Shu-quan Zhang,^a Zhihua Sun,^a Junhua Luo,^{*,a} Zheshuai Lin,^{*,b} and Maochun Hong^a

^aKey Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

^bBeijing Center for Crystal R&D, Key Lab of Functional Crystals and Laser Technology of Chinese Academy of Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^cUniversity of Chinese Academy of Sciences, Beijing 100049, China

Figure S1. Experimental and calculated PXRD patterns for CdTeMoO₆.

Figure S2. PXRD patterns of CdTeMoO₆ powders before and after melting.

Figure S3. The neutral layered structure of CdTeMoO₆.

Figure S4. Calculated linear refractive indices for CdTeMoO₆.

Atom	Wyck.	x/a	y/b	z/c	$U_{ m eq} [{ m \AA}^2]^{ m a}$				
Cd	2b	1/2	1/2	1/2	0.0094(1)				
Te	2c	1	1/2	0.24243(4)	0.0074(1)				
Mo	2c	1/2	0	0.18599(6)	0.0081(1)				
01	4e	0.1910(6)	0.3090(6)	0.3769(4)	0.0137(8)				
O2	4e	0.3197(5)	0.1803(5)	0.0701(5)	0.0161(9)				
O3	4e	0.7179(5)	0.2179(5)	0.2872(5)	0.0125(8)				
^{<i>a</i>} U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.									

Table S1. Atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)for CdTeMoO₆.

Table S2. Selected bond distances (Å) and angles (deg.) for CdTeMoO₆.

Cd—O1	2.221(2)	Te—O3 ^v	2.148(4)				
Cd—O1 ⁱ	2.221(2)	Te—O3	2.148(4)				
Cd—O1 ⁱⁱ	2.221(2)	Mo—O2	1.709(4)				
Cd—O1 ⁱⁱⁱ	2.221(2)	Mo—O3	1.869(4)				
Te—O1 ^{iv}	1.877(4)	Mo—O2 ^{viii}	1.709(4)				
Te—O1 ⁱ	1.877(4)	Mo—O3 ^{viii}	1.869(4)				
$O1$ — Cd — $O1^i$	119.65(18)	$O1^{iv}$ —Te—O3	82.95(8)				
O1—Cd—O1 ⁱⁱ	104.63(8)	$O1^{i}$ —Te—O3	82.95(8)				
$O1^{i}$ —Cd— $O1^{ii}$	104.63(8)	O3 ^v —Te—O3	158.2(2)				
O1—Cd—O1 ⁱⁱⁱ	104.63(8)	O2 ^{viii} —Mo—O2	104.1(3)				
$O1^{i}$ —Cd— $O1^{iii}$	104.63(8)	O2 ^{viii} —Mo—O3	107.57(9)				
O1 ⁱⁱ —Cd—O1 ⁱⁱⁱ	119.65(18)	O2—Mo—O3	107.57(9)				
O1 ^{iv} —Te—O1 ⁱ	99.0(3)	O2 ^{viii} —Mo—O3 ^{viii}	107.57(9)				
$O1^{iv}$ —Te— $O3^{v}$	82.95(8)	O2—Mo—O3 ^{viii}	107.57(9)				
$O1^{i}$ —Te— $O3^{v}$	82.95(8)	O3—Mo—O3 ^{viii}	121.2(2)				
Symmetry codes: (i)	1-x, 1-y, z; (ii) 1	-y, x, 1-z; (iii) y, 1-x, 1-z;	(iv) 1+x, y, z;				
(v) 2-x, 1-y, z; (vi) -1+x, y, z; (vii) -0.5+x, 0.5-y, 1-z; (viii) 1-x, -y, z.							

Table S3. Anisotropic displacement parameters ($Å^2$) for CdTeMoO₆.

Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
Cd	0.00836(18)	0.00836(18)	0.0116(2)	0	0	0
Te	0.00848(16)	0.00848(16)	0.0053(2)	0.0009(4)	0	0
Mo	0.00856(18)	0.00856(18)	0.0072(3)	-0.0029(6)	0	0
01	0.0137(11)	0.0137(11)	0.014(2)	-0.0032(18)	-0.0077(12)	0.0077(12)
O2	0.0184(13)	0.0184(13)	0.011(2)	0.0037(17)	-0.0030(14)	0.0030(14)
03	0.0121(12)	0.0121(12)	0.013(2)	-0.0046(17)	-0.0015(13)	-0.0015(13)