Supporting information

Figure S1. The obtained yellow crystal of **1** (left) and its growth habit determined by the X-ray powder diffraction (right).

Figure S2. Calculated and experimental XPRD patterns on the polycrystalline samples of 1 at the room temperature, which fairly well confirms the purities of the obtained sample.

Figure S3. Comparison of the variable-temperature X-ray powder diffraction patterns of **1** on the basis of structure determination. The results indicate that spectra in LTP and ITP are well coincident while the patterns in RTP change obviously, explicitly confirming the phase transition of **1**.

Figure S4. DSC traces of 1 measured in the temperature range of 160-290 K.

Figure S5. (a) Schematic illustration for the rotational motions of room-temperature dabco molecule in 1 viewed along the N-N axis direction. All the bonded-hydrogens are split owing to the disordings of rotational motions of dabo; (b) Corresponding plane through carbon atoms in dabco. The rotational N-N axis lies along the direction of the normal for the current coplane, which is almost parallel to the crystallographic *c*-axis.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is O The Royal Society of Chemistry 2013

Figure S6. (a) Molecule structure of 1 with atomic labellings at the LT phase, in which all the dabco molecules have become much more ordered; (b) Several strong N-H···O H-bonds are shown as the black dashed lines between N atoms of the dabco and O atoms of *p*-nitrophenol moieties.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is O The Royal Society of Chemistry 2013

Figure S7. DSC and dielectric traces measured on the polycrystalline powder of the deuterated analog of **1** in the heating mode. The observed anomalies confirm the existence of phase transition. However, phase-transition temperature is still located around 130 K and the absence of deuterium isotope effect exclude the possible motions of proton.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is The Royal Society of Chemistry 2013

	RTP, 293 K	ITP, 120 K	LTP, 100 K
Empirical formula	$C_{18}H_{22}N_4O_6$	$C_{18}H_{22}N_4O_6$	$C_{18}H_{22}N_4O_6$
Formula weight	390.40	390.40	390.40
Crystal system, space group	Monoclinic, $P2_1/c$	Triclinic, Pī	Triclinic, Pī
Unit cell dimensions	a = 9.984(6) Å	a = 9.805(5) Å	a = 9.785(2) Å
	b = 8.890(5) Å	b = 13.762(6) Å	<i>b</i> =13.7474(18) Å
	c = 10.791(7) Å	c = 13.774(7) Å	c = 13.7474(18) Å
	$\beta = 99.593(9)^{\circ}$	$\alpha = 80.039(13)^{\circ}$	$\alpha = 80.157(14)$ °
		$\beta = 83.930(9)^{\circ}$	$\beta = 84.13(2)$ °
		$\gamma = 84.024(11)^{\circ}$	$\gamma = 84.13(2)$ °
Volume	944.4(10) Å ³	1813.3(15) Å ³	1805.7(5) Å ³
Z, Calculated density	2, 1.373 Mg/m ³	4, 1.430 Mg/m ³	4, 1.436 Mg/m ³
Absorption coefficient	0.105 mm ⁻¹	0.109 mm ⁻¹	0.109 mm ⁻¹
<i>F</i> (000)	412	824	824
Theta range for data collection	4.04° - 25.00°	2.30° - 27.39°	1.51° - 23.99°
Limiting indices	-11<=h<=11,	-12<=h<=12,	-11<=h<=11,
	-10<=k<=10,	-16<=k<=17,	-15<=k<=13,
	-12<=l<=12	-17<=l<=17	-15<=l<=12
Reflections collected / unique	5754 / 1604	15084 / 7628	7724 / 5263
	$R_{\rm int} = 0.0341$	$R_{\rm int} = 0.0917$	$R_{\rm int} = 0.0189$
Max. and min. transmission	0.9703, 0.9574	0.9628, 0.9455	0.9710, 0.9555
Data / restraints / parameters	1604 / 0 / 154	7628 / 0 / 506	5263 / 0 / 505
GOF	1.068	1.089	1.184
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0461$	$R_1 = 0.1768$	$R_1 = 0.1050$
	$wR_2 = 0.1303$		$wR_2 = 0.2386$
<i>R</i> indices (all data)	$R_1 = 0.0569$	$R_1 = 0.1829$	$R_1 = 0.1193$
	$wR_2 = 0.1390$		$wR_2 = 0.449$

 Table S1. Crystal data collection and structure refinement for 1.

Table S2. Selected U_{eq} values for the atoms of dabco molecules at different temperatures, which is defined as one third of the trace of the orthogonalized U_{ij} tensor. The detailed U_{ij} tensor ratio for dabco molecule for **1** at RT phase is U_{eq} (N)/ U_{eq} (mean of carbon atoms) = 73.5/49; the value at IT phase is 27.5/19; the value at LT phase is 24.7/18. These findings reveal the successive order-disordered feature of the phase transition.

Atoms	$U_{\rm eq}$, RTP	$U_{\rm eq}$, ITP	$U_{\rm eq}, \rm LTP$
C7	68(1)	28(1)	22(1)
C8	69(1)	26(2)	24(1)
C9	80(1)	29(1)	25(2)
C10	80(1)	28(1)	27(1)
C11	69(1)	27(2)	25(2)
C12	75(1)	27(1)	25(2)
N1	-	18(1)	17(1)
N2	49(1)	20(1)	19(1)