Origin of the half-metallic properties of graphitic carbon nitride in bulk and confined form

Yang Li¹, Stefano Sanvito², Shimin Hou^{1,*}

 Centre for Nanoscale Science and Technology, Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China
School of Physics and CRANN, Trinity College, Dublin 2, Ireland

1. Frontier molecular orbitals of the isolated sym-triazine and benzene molecules

Figure S1 Comparison of the frontier molecular orbitals of the isolated sym-triazine and benzene molecules calculated at the PBEPBE/6-311+G(d,p)

2. Optimized atomic structures and the corresponding spin-resolved band structures of zigzag g- C_4N_3 nanoribbons passivated with methyl groups

Figure S2 (a) The optimized atomic structure of the 2Z-g-C₄N₃ nanoribbon passivated with methyl groups, and the corresponding spin-polarized band structures of the 2Z-g-C₄N₃ (b), 4Z-g-C₄N₃ (c) and 5Z-g-C₄N₃ (d) nanoribbons

3. Optimized atomic structures and the corresponding spin-resolved band structures of armchair $g-C_4N_3$ nanoribbons passivated with methyl groups

Figure S3 (a) The optimized atomic structure of the 6A-g- C_4N_3 nanoribbon passivated with methyl groups, and the corresponding spin-polarized band structures of the 6A-g- C_4N_3 (b), 10A-g- C_4N_3 (c) and 11A-g- C_4N_3 (d) nanoribbons